BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29899358)

  • 21. Direct calcium binding results in activation of brain serine racemase.
    Cook SP; Galve-Roperh I; Martínez del Pozo A; Rodríguez-Crespo I
    J Biol Chem; 2002 Aug; 277(31):27782-92. PubMed ID: 12021263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of a serine racemase in the silkworm Bombyx mori.
    Tanaka Y; Yoshimura T; Hakamata M; Saito C; Sumitani M; Sezutsu H; Hemmi H; Ito T
    J Biochem; 2022 Jun; 172(1):17-28. PubMed ID: 35325141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Kinetic and allosteric properties of L-threonine-L-serine dehydratase from human liver].
    Akopov MA; Kagan ZC; Berezov TT; Filiptsev PIa
    Biokhimiia; 1979 Feb; 44(2):282-92. PubMed ID: 435568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of human serine racemase, an emerging target for medicinal chemistry.
    Jirásková-Vaníčková J; Ettrich R; Vorlová B; Hoffman HE; Lepšík M; Jansa P; Konvalinka J
    Curr Drug Targets; 2011 Jun; 12(7):1037-55. PubMed ID: 21291385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-directed mutagenesis of rice serine racemase: evidence that Glu219 and Asp225 mediate the effects of Mg2+ on the activity.
    Gogami Y; Kobayashi A; Ikeuchi T; Oikawa T
    Chem Biodivers; 2010 Jun; 7(6):1579-90. PubMed ID: 20564571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo.
    Katane M; Saitoh Y; Uchiyama K; Nakayama K; Saitoh Y; Miyamoto T; Sekine M; Uda K; Homma H
    Genes Cells; 2016 Sep; 21(9):966-77. PubMed ID: 27458110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guanylyl cyclases A and B are asymmetric dimers that are allosterically activated by ATP binding to the catalytic domain.
    Robinson JW; Potter LR
    Sci Signal; 2012 Sep; 5(240):ra65. PubMed ID: 22949736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition.
    Mustafa AK; van Rossum DB; Patterson RL; Maag D; Ehmsen JT; Gazi SK; Chakraborty A; Barrow RK; Amzel LM; Snyder SH
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2921-6. PubMed ID: 19193859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation.
    Mustafa AK; Kumar M; Selvakumar B; Ho GP; Ehmsen JT; Barrow RK; Amzel LM; Snyder SH
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2950-5. PubMed ID: 17293453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of eukaryotic serine racemases in the bacterial domain and characterization of a representative protein in Roseobacter litoralis Och 149.
    Kubota T; Shimamura S; Kobayashi T; Nunoura T; Deguchi S
    Microbiology (Reading); 2016 Jan; 162(1):53-61. PubMed ID: 26475231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase.
    French JB; Neau DB; Ealick SE
    J Mol Biol; 2011 Jul; 410(3):447-60. PubMed ID: 21616082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine.
    De Miranda J; Panizzutti R; Foltyn VN; Wolosker H
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14542-7. PubMed ID: 12393813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational flexibility within the small domain of human serine racemase.
    Koulouris CR; Bax BD; Atack JR; Roe SM
    Acta Crystallogr F Struct Biol Commun; 2020 Feb; 76(Pt 2):65-73. PubMed ID: 32039887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating the function of human serine racemase and human serine dehydratase by protein engineering.
    Wang CY; Ku SC; Lee CC; Wang AH
    Protein Eng Des Sel; 2012 Nov; 25(11):741-9. PubMed ID: 23112234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP.
    Baumgart F; Mancheño JM; Rodríguez-Crespo I
    FEBS J; 2007 Sep; 274(17):4561-71. PubMed ID: 17697119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
    James KA; Verkhivker GM
    PLoS One; 2014; 9(11):e113488. PubMed ID: 25427151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes.
    Suzuki M; Sasabe J; Miyoshi Y; Kuwasako K; Muto Y; Hamase K; Matsuoka M; Imanishi N; Aiso S
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2217-24. PubMed ID: 25870284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Pinching" the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage.
    McCluskey GD; Bearne SL
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2714-2727. PubMed ID: 30251661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate.
    Strísovský K; Jirásková J; Barinka C; Majer P; Rojas C; Slusher BS; Konvalinka J
    FEBS Lett; 2003 Jan; 535(1-3):44-8. PubMed ID: 12560076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A functional analysis of the allosteric nucleotide monophosphate binding site of carbamoyl phosphate synthetase.
    Pierrat OA; Raushel FM
    Arch Biochem Biophys; 2002 Apr; 400(1):34-42. PubMed ID: 11913968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.