These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29899361)
1. Hot-electron transfer in quantum-dot heterojunction films. Grimaldi G; Crisp RW; Ten Brinck S; Zapata F; van Ouwendorp M; Renaud N; Kirkwood N; Evers WH; Kinge S; Infante I; Siebbeles LDA; Houtepen AJ Nat Commun; 2018 Jun; 9(1):2310. PubMed ID: 29899361 [TBL] [Abstract][Full Text] [Related]
2. Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature. Wang HI; Infante I; Brinck ST; Cánovas E; Bonn M Nano Lett; 2018 Aug; 18(8):5111-5115. PubMed ID: 30039708 [TBL] [Abstract][Full Text] [Related]
3. Observation of a phonon bottleneck in copper-doped colloidal quantum dots. Wang L; Chen Z; Liang G; Li Y; Lai R; Ding T; Wu K Nat Commun; 2019 Oct; 10(1):4532. PubMed ID: 31586066 [TBL] [Abstract][Full Text] [Related]
4. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]
5. Electrical Detection of Quantum Dot Hot Electrons Generated via a Mn Barrows CJ; Rinehart JD; Nagaoka H; deQuilettes DW; Salvador M; Chen JI; Ginger DS; Gamelin DR J Phys Chem Lett; 2017 Jan; 8(1):126-130. PubMed ID: 27966967 [TBL] [Abstract][Full Text] [Related]
6. CHARGE TRANSFER. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Wu K; Chen J; McBride JR; Lian T Science; 2015 Aug; 349(6248):632-5. PubMed ID: 26250682 [TBL] [Abstract][Full Text] [Related]
7. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots. Dong Y; Parobek D; Rossi D; Son DH Nano Lett; 2016 Nov; 16(11):7270-7275. PubMed ID: 27701861 [TBL] [Abstract][Full Text] [Related]
8. Efficient hot-electron extraction in two-dimensional semiconductor heterostructures by ultrafast resonant transfer. Li Y; Zhou H; Chen Y; Zhao Y; Zhu H J Chem Phys; 2020 Jul; 153(4):044705. PubMed ID: 32752698 [TBL] [Abstract][Full Text] [Related]
9. Copper-indium-selenide quantum dot-sensitized solar cells. Yang J; Kim JY; Yu JH; Ahn TY; Lee H; Choi TS; Kim YW; Joo J; Ko MJ; Hyeon T Phys Chem Chem Phys; 2013 Dec; 15(47):20517-25. PubMed ID: 24177572 [TBL] [Abstract][Full Text] [Related]
10. Cadmium Selenide Quantum Dots for Solar Cell Applications: A Review. Rahman MM; Karim MR; Alharbi HF; Aldokhayel B; Uzzaman T; Zahir H Chem Asian J; 2021 Apr; 16(8):902-921. PubMed ID: 33615706 [TBL] [Abstract][Full Text] [Related]
11. Direct mapping of hot-electron relaxation and multiplication dynamics in PbSe quantum dots. Miaja-Avila L; Tritsch JR; Wolcott A; Chan WL; Nelson CA; Zhu XY Nano Lett; 2012 Mar; 12(3):1588-91. PubMed ID: 22335631 [TBL] [Abstract][Full Text] [Related]
13. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots. Wang J; Wang L; Yu S; Ding T; Xiang D; Wu K Nat Commun; 2021 Jan; 12(1):550. PubMed ID: 33483503 [TBL] [Abstract][Full Text] [Related]
14. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots. Spoor FC; Kunneman LT; Evers WH; Renaud N; Grozema FC; Houtepen AJ; Siebbeles LD ACS Nano; 2016 Jan; 10(1):695-703. PubMed ID: 26654878 [TBL] [Abstract][Full Text] [Related]
15. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics. Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377 [TBL] [Abstract][Full Text] [Related]
16. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells. Dong Y; Rossi D; Parobek D; Son DH Chemphyschem; 2016 Mar; 17(5):660-4. PubMed ID: 26807659 [TBL] [Abstract][Full Text] [Related]
17. Orbital Topology Controlling Charge Injection in Quantum-Dot-Sensitized Solar Cells. Hansen T; Žídek K; Zheng K; Abdellah M; Chábera P; Persson P; Pullerits T J Phys Chem Lett; 2014 Apr; 5(7):1157-62. PubMed ID: 26274464 [TBL] [Abstract][Full Text] [Related]
18. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Kamat PV Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938 [TBL] [Abstract][Full Text] [Related]
19. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell. Halim MA Nanomaterials (Basel); 2012 Dec; 3(1):22-47. PubMed ID: 28348320 [TBL] [Abstract][Full Text] [Related]
20. Slow electron cooling in colloidal quantum dots. Pandey A; Guyot-Sionnest P Science; 2008 Nov; 322(5903):929-32. PubMed ID: 18988849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]