These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29899467)

  • 1. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction.
    Fan X; Hu E; Ji X; Zhu Y; Han F; Hwang S; Liu J; Bak S; Ma Z; Gao T; Liou SC; Bai J; Yang XQ; Mo Y; Xu K; Su D; Wang C
    Nat Commun; 2018 Jun; 9(1):2324. PubMed ID: 29899467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes.
    Chen K; Lei M; Yao Z; Zheng Y; Hu J; Lai C; Li C
    Sci Adv; 2021 Nov; 7(45):eabj1491. PubMed ID: 34730994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
    Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C
    ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triggering Reversible Intercalation-Conversion Combined Chemistry for High-Energy-Density Lithium Battery Cathodes.
    Heo J; Jung SK; Yu S; Han S; Yoo J; Kim Y; Jang HY; Kang K
    Adv Mater; 2024 Dec; 36(49):e2407754. PubMed ID: 39428900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Iron Oxyfluoride (FeOF)-Graphene Composites as Sustainable Cathodes for High Energy Density Lithium Batteries.
    Liu Y; Yu Y; Yang F; Zhu G; Yu K; Kou R; Sun C; Liu Y; Xu J; Liu C; Li C; Liu T; Ren Y; Lu W; Ferreira R; Ferreira P; Zhang Z; Xie J
    Small; 2023 Apr; 19(15):e2206947. PubMed ID: 36631255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Capacity and Ultra-Long-Life Mg-Metal Batteries Enabled by Intercalation-Conversion Hybrid Cathode Materials.
    Huang T; Xue X; Zhang Y; Cui M; Zhang Y; Chen L; Xiao B; Qi J; Sui Y
    Small; 2024 Nov; 20(46):e2404898. PubMed ID: 39101284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries.
    Hwang S; Ji X; Bak SM; Sun K; Bai J; Fan X; Gan H; Wang C; Su D
    ACS Nano; 2020 Aug; 14(8):10276-10283. PubMed ID: 32639719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials.
    Zhou J; Zhang D; Zhang X; Song H; Chen X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21223-9. PubMed ID: 25399691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode.
    Zhao Y; Wei K; Wu H; Ma S; Li J; Cui Y; Dong Z; Cui Y; Li C
    ACS Nano; 2019 Feb; 13(2):2490-2500. PubMed ID: 30640443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries.
    Li Y; Zhou X; Bai Y; Chen G; Wang Z; Li H; Wu F; Wu C
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19852-19860. PubMed ID: 28453247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance Lithium-Sulfur Batteries.
    Li X; Gao B; Huang X; Guo Z; Li Q; Zhang X; Chu PK; Huo K
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2961-2969. PubMed ID: 30601658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.
    Fan X; Luo C; Lamb J; Zhu Y; Xu K; Wang C
    Nano Lett; 2015 Nov; 15(11):7650-6. PubMed ID: 26451460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Zero-Strain Insertion Cathode Material for Room-Temperature Fluoride-Ion Batteries.
    Zhang S; Wang T; Zhang J; Miao Y; Yin Q; Wu Z; Wu Y; Yuan Q; Han J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24518-24525. PubMed ID: 35603940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.
    Xiong D; Li X; Bai Z; Shan H; Fan L; Wu C; Li D; Lu S
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10643-10651. PubMed ID: 28271878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Nonpresodiate Sodium-Ion Capacitor with High Performance.
    Li S; Chen J; Gong X; Wang J; Lee PS
    Small; 2018 Dec; 14(50):e1804035. PubMed ID: 30375724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.