These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29899467)

  • 21. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.
    Wang X; Gu W; Lee JT; Nitta N; Benson J; Magasinski A; Schauer MW; Yushin G
    Small; 2015 Oct; 11(38):5164-73. PubMed ID: 26224378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach.
    Ma Y; Garofalini SH
    J Am Chem Soc; 2012 May; 134(19):8205-11. PubMed ID: 22545624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium n-Doped Polyaniline as a High-Performance Electroactive Material for Rechargeable Batteries.
    Jiménez P; Levillain E; Alévêque O; Guyomard D; Lestriez B; Gaubicher J
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1553-1556. PubMed ID: 28044392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible flowering of CuO nanoclusters via conversion reaction for dual-ion Li metal batteries.
    Li S; Lee JH; Hwang SM; Kim YJ
    Nano Converg; 2023 Jan; 10(1):4. PubMed ID: 36637575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithium-Ion Storage Characteristics of Rod-Like Morphology FeF
    Liu M; Liu J; Chen B; Wu T; Wang G; Chen M; Yang Z; Bai Y; Wang X
    Small; 2022 Jan; 18(1):e2105193. PubMed ID: 34786835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the conversion mechanism and performance of monodisperse FeF
    Xiao AW; Lee HJ; Capone I; Robertson A; Wi TU; Fawdon J; Wheeler S; Lee HW; Grobert N; Pasta M
    Nat Mater; 2020 Jun; 19(6):644-654. PubMed ID: 32094491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafine Iron Pyrite (FeS₂) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries.
    Douglas A; Carter R; Oakes L; Share K; Cohn AP; Pint CL
    ACS Nano; 2015 Nov; 9(11):11156-65. PubMed ID: 26529682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.
    Liu Z; Zhou L; Ge Q; Chen R; Ni M; Utetiwabo W; Zhang X; Yang W
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19311-19317. PubMed ID: 29800511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.
    Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium intercalation mechanism into FeF
    Ali G; Lee JH; Chang W; Cho BW; Jung HG; Nam KW; Chung KY
    Sci Rep; 2017 Feb; 7():42237. PubMed ID: 28169373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton Intercalation/De-Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells.
    Zhao Q; Liu L; Yin J; Zheng J; Zhang D; Chen J; Archer LA
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3048-3052. PubMed ID: 31721411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries.
    Li B; Rooney DW; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5057-63. PubMed ID: 23688074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li-O
    Yoon KR; Shin K; Park J; Cho SH; Kim C; Jung JW; Cheong JY; Byon HR; Lee HM; Kim ID
    ACS Nano; 2018 Jan; 12(1):128-139. PubMed ID: 29178775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical Mesoporous Iron Fluoride with Superior Rate Performance for Lithium-Ion Batteries.
    Han Y; Li H; Li J; Si H; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32869-32874. PubMed ID: 27797467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lower ammoniation activation energy of CoN nanosheets by Mn doping with superior energy storage performance for secondary ion batteries.
    Zhu L; Chen Z; Song Y; Wang P; Jiang Y; Jiang L; Zhou YN; Hu L
    Nanoscale; 2018 Mar; 10(12):5581-5590. PubMed ID: 29527601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries.
    Kou J; Chen L; Su Y; Bao L; Wang J; Li N; Li W; Wang M; Chen S; Wu F
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17910-8. PubMed ID: 26222273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5.
    Ma W; Zhang C; Liu C; Nan X; Fu H; Cao G
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19542-9. PubMed ID: 27400230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.