These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29899480)

  • 41. Large interannual variability in supraglacial lakes around East Antarctica.
    Arthur JF; Stokes CR; Jamieson SSR; Rachel Carr J; Leeson AA; Verjans V
    Nat Commun; 2022 Mar; 13(1):1711. PubMed ID: 35361810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antarctic terrestrial life--challenging the history of the frozen continent?
    Convey P; Gibson JA; Hillenbrand CD; Hodgson DA; Pugh PJ; Smellie JL; Stevens MI
    Biol Rev Camb Philos Soc; 2008 May; 83(2):103-17. PubMed ID: 18429764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atmospheric sea-salt and halogen cycles in the Antarctic.
    Hara K; Osada K; Yabuki M; Matoba S; Hirabayashi M; Fujita S; Nakazawa F; Yamanouchi T
    Environ Sci Process Impacts; 2020 Oct; 22(10):2003-2022. PubMed ID: 32749425
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations.
    Ritz C; Edwards TL; Durand G; Payne AJ; Peyaud V; Hindmarsh RC
    Nature; 2015 Dec; 528(7580):115-8. PubMed ID: 26580020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Variability of Antarctic sea ice extent over the past 200 years.
    Yang J; Xiao C; Liu J; Li S; Qin D
    Sci Bull (Beijing); 2021 Dec; 66(23):2394-2404. PubMed ID: 36654125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Marine-terminating glaciers sustain high productivity in Greenland fjords.
    Meire L; Mortensen J; Meire P; Juul-Pedersen T; Sejr MK; Rysgaard S; Nygaard R; Huybrechts P; Meysman FJR
    Glob Chang Biol; 2017 Dec; 23(12):5344-5357. PubMed ID: 28776870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life hung by a thread: endurance of Antarctic fauna in glacial periods.
    Thatje S; Hillenbrand CD; Mackensen A; Larter R
    Ecology; 2008 Mar; 89(3):682-92. PubMed ID: 18459332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.
    Stanton TP; Shaw WJ; Truffer M; Corr HF; Peters LE; Riverman KL; Bindschadler R; Holland DM; Anandakrishnan S
    Science; 2013 Sep; 341(6151):1236-9. PubMed ID: 24031016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diminishing sea ice.
    Ray GC; Hufford GL; Krupnik II; Overland JE
    Science; 2008 Sep; 321(5895):1443-5; author reply 1443-5. PubMed ID: 18787150
    [No Abstract]   [Full Text] [Related]  

  • 52. Lakes under the ice: Antarctica's secret garden.
    Fox D
    Nature; 2014 Aug; 512(7514):244-6. PubMed ID: 25143097
    [No Abstract]   [Full Text] [Related]  

  • 53. Climate science: Southern Ocean freshened by sea ice.
    Maksym T
    Nature; 2016 Sep; 537(7618):40-1. PubMed ID: 27582217
    [No Abstract]   [Full Text] [Related]  

  • 54. Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica.
    Torstensson A; Fransson A; Currie K; Wulff A; Chierici M
    PLoS One; 2018; 13(4):e0195587. PubMed ID: 29634756
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.
    Massom R; Reid P; Stammerjohn S; Raymond B; Fraser A; Ushio S
    PLoS One; 2013; 8(5):e64756. PubMed ID: 23705008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.
    Kingslake J; Scherer RP; Albrecht T; Coenen J; Powell RD; Reese R; Stansell ND; Tulaczyk S; Wearing MG; Whitehouse PL
    Nature; 2018 Jun; 558(7710):430-434. PubMed ID: 29899456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Paleoceanography. Antarctic role in Northern Hemisphere glaciation.
    Woodard SC; Rosenthal Y; Miller KG; Wright JD; Chiu BK; Lawrence KT
    Science; 2014 Nov; 346(6211):847-51. PubMed ID: 25342658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment.
    Nerentorp Mastromonaco MG; Gårdfeldt K; Langer S; Dommergue A
    Environ Sci Technol; 2016 Dec; 50(23):12705-12712. PubMed ID: 27780352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.
    Fillinger L; Janussen D; Lundälv T; Richter C
    Curr Biol; 2013 Jul; 23(14):1330-4. PubMed ID: 23850279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review.
    Nichols CA; Guezennec J; Bowman JP
    Mar Biotechnol (NY); 2005; 7(4):253-71. PubMed ID: 16075348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.