These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29899503)

  • 21. From extant to extinct: locomotor ontogeny and the evolution of avian flight.
    Heers AM; Dial KP
    Trends Ecol Evol; 2012 May; 27(5):296-305. PubMed ID: 22304966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palaeontology: leg feathers in an Early Cretaceous bird.
    Zhang F; Zhou Z
    Nature; 2004 Oct; 431(7011):925. PubMed ID: 15496911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new species of pengornithidae (aves: enantiornithes) from the lower cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds.
    Hu H; O'Connor JK; Zhou Z
    PLoS One; 2015; 10(6):e0126791. PubMed ID: 26039693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Fish-Eating Enantiornithine Bird from the Early Cretaceous of China Provides Evidence of Modern Avian Digestive Features.
    Wang M; Zhou Z; Sullivan C
    Curr Biol; 2016 May; 26(9):1170-6. PubMed ID: 27133872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.
    Zhou Z; Clarke J; Zhang F
    J Anat; 2008 May; 212(5):565-77. PubMed ID: 18397240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution.
    Zhou Z; Zhang F
    Naturwissenschaften; 2003 May; 90(5):220-5. PubMed ID: 12743704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological variation of tail bone among two chicken breeds and their F
    Nyirimana P; Kondoh D; Tomiyasu J; Watanabe M; Okada Y; Nishida Y; Goto T
    J Morphol; 2024 May; 285(5):e21704. PubMed ID: 38702980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The quality of the fossil record of Mesozoic birds.
    Fountaine TM; Benton MJ; Dyke GJ; Nudds RL
    Proc Biol Sci; 2005 Feb; 272(1560):289-94. PubMed ID: 15705554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A long-tailed, seed-eating bird from the Early Cretaceous of China.
    Zhou Z; Zhang F
    Nature; 2002 Jul; 418(6896):405-9. PubMed ID: 12140555
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Wang X; O'Connor JK; Maina JN; Pan Y; Wang M; Wang Y; Zheng X; Zhou Z
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11555-11560. PubMed ID: 30348768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.
    Pan Y; Zheng W; Moyer AE; O'Connor JK; Wang M; Zheng X; Wang X; Schroeter ER; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7900-E7907. PubMed ID: 27872291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines.
    Wu YH; Chiappe LM; Bottjer DJ; Nava W; Martinelli AG
    Sci Rep; 2021 Sep; 11(1):19349. PubMed ID: 34593843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A primitive enantiornithine bird and the origin of feathers.
    Zhang F; Zhou Z
    Science; 2000 Dec; 290(5498):1955-9. PubMed ID: 11110660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and evolution of the notarium in Pterosauria.
    Aires AS; Reichert LM; Müller RT; Pinheiro FL; Andrade MB
    J Anat; 2021 Feb; 238(2):400-415. PubMed ID: 33026119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.
    Allen V; Paxton H; Hutchinson JR
    Anat Rec (Hoboken); 2009 Sep; 292(9):1442-61. PubMed ID: 19711477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axial and appendicular pneumaticity in Archaeopteryx.
    Christiansen P; Bonde N
    Proc Biol Sci; 2000 Dec; 267(1461):2501-5. PubMed ID: 11197125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.
    You HL; Lamanna MC; Harris JD; Chiappe LM; O'connor J; Ji SA; Lü JC; Yuan CX; Li DQ; Zhang X; Lacovara KJ; Dodson P; Ji Q
    Science; 2006 Jun; 312(5780):1640-3. PubMed ID: 16778053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.