BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 29899969)

  • 21. Molecular, Cellular and Pharmaceutical Aspects of Synthetic Hydroxyapatite Bone Substitutes for Oral and Maxillofacial Grafting.
    Gotz W; Papageorgiou SN
    Curr Pharm Biotechnol; 2017; 18(1):95-106. PubMed ID: 27915980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonoperative and Operative Soft-Tissue and Cartilage Regeneration and Orthopaedic Biologics of the Foot and Ankle: An Orthoregeneration Network Foundation Review.
    Danilkowicz R; Murawski C; Pellegrini M; Walther M; Valderrabano V; Angthong C; Adams S
    Arthroscopy; 2022 Jul; 38(7):2350-2358. PubMed ID: 35605840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part I: Fusion Biology, Autografts, Allografts, Demineralized Bone Matrix, and Ceramics.
    Lee BJ; Seok MC; Koo HW; Jeong JH; Ko MJ
    Korean J Neurotrauma; 2023 Dec; 19(4):446-453. PubMed ID: 38222832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular basis for action of bioactive glasses as bone graft substitute.
    Välimäki VV; Aro HT
    Scand J Surg; 2006; 95(2):95-102. PubMed ID: 16821652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interconnected porous hydroxyapatite ceramics for bone tissue engineering.
    Yoshikawa H; Tamai N; Murase T; Myoui A
    J R Soc Interface; 2009 Jun; 6 Suppl 3(Suppl 3):S341-8. PubMed ID: 19106069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study.
    Anghelescu VM; Neculae I; Dincă O; Vlădan C; Socoliuc C; Cioplea M; Nichita L; Popp C; Zurac S; Bucur A
    J Immunol Res; 2018; 2018():9349207. PubMed ID: 30298138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.
    Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C
    J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?
    Van Lieshout EM; Alt V
    Injury; 2016 Jan; 47 Suppl 1():S43-6. PubMed ID: 26768291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compositions and Structural Geometries of Scaffolds Used in the Regeneration of Cleft Palates: A Review of the Literature.
    Reyna-Urrutia VA; González-González AM; Rosales-Ibáñez R
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.
    Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y
    Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ceramic drug delivery: a perspective.
    Paul W; Sharma CP
    J Biomater Appl; 2003 Apr; 17(4):253-64. PubMed ID: 12797418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone grafts and biomaterials substitutes for bone defect repair: A review.
    Wang W; Yeung KWK
    Bioact Mater; 2017 Dec; 2(4):224-247. PubMed ID: 29744432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?
    Hannink G; Arts JJ
    Injury; 2011 Sep; 42 Suppl 2():S22-5. PubMed ID: 21714966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects.
    Rodríguez-Merchán EC
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: Bone graft, implant and reconstructive surgery.
    Simonpieri A; Del Corso M; Vervelle A; Jimbo R; Inchingolo F; Sammartino G; Dohan Ehrenfest DM
    Curr Pharm Biotechnol; 2012 Jun; 13(7):1231-56. PubMed ID: 21740370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of autogenous bone, bioactive glasses, and calcium phosphate cement in surgical mandibular bone defects in Cebus apella monkeys.
    Cancian DC; Hochuli-Vieira E; Marcantonio RA; Garcia Júnior IR
    Int J Oral Maxillofac Implants; 2004; 19(1):73-9. PubMed ID: 14982358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response.
    Bouler JM; Pilet P; Gauthier O; Verron E
    Acta Biomater; 2017 Apr; 53():1-12. PubMed ID: 28159720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments.
    Zhao R; Yang R; Cooper PR; Khurshid Z; Shavandi A; Ratnayake J
    Molecules; 2021 May; 26(10):. PubMed ID: 34070157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthetic and Bone tissue engineering graft substitutes: What is the future?
    Valtanen RS; Yang YP; Gurtner GC; Maloney WJ; Lowenberg DW
    Injury; 2021 Jun; 52 Suppl 2():S72-S77. PubMed ID: 32732118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.