These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 29899969)

  • 41. The use of platelet rich plasma, bone morphogenetic protein-2 and different scaffolds in oral and maxillofacial surgery - literature review in comparison with own clinical experience.
    Schuckert KH; Jopp S; Osadnik M
    J Oral Maxillofac Res; 2011 Apr; 2(1):e2. PubMed ID: 24421984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Biomaterials Used for Periodontal Tissue Regeneration-A Concise Evidence-Based Review.
    Varghese J; Rajagopal A; Shanmugasundaram S
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956553
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of bone-graft substitutes in distal radius fractures.
    Ladd AL; Pliam NB
    J Am Acad Orthop Surg; 1999; 7(5):279-90. PubMed ID: 10504355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy.
    Ozalay M; Sahin O; Akpinar S; Ozkoc G; Cinar M; Cesur N
    Arch Orthop Trauma Surg; 2009 Jun; 129(6):747-52. PubMed ID: 19015864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Biomaterials and osseous regeneration].
    Duguy N; Petite H; Arnaud E
    Ann Chir Plast Esthet; 2000 Jun; 45(3):364-76. PubMed ID: 10929463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone Substitutes in Orthopaedic Surgery: Current Status and Future Perspectives.
    Busch A; Wegner A; Haversath M; Jäger M
    Z Orthop Unfall; 2021 Jun; 159(3):304-313. PubMed ID: 32023626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Difference in release kinetics of unwashed and washed platelet-released supernatants from bone substitute materials: the impact of platelet preparation modalities.
    Knoop C; Edelmayer M; Janjić K; Pensch M; Fischer MB; Gruber R; Agis H
    J Periodontal Res; 2017 Aug; 52(4):772-786. PubMed ID: 28261803
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomaterials and Bioactive Agents in Spinal Fusion.
    Duarte RM; Varanda P; Reis RL; Duarte ARC; Correia-Pinto J
    Tissue Eng Part B Rev; 2017 Dec; 23(6):540-551. PubMed ID: 28514897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects.
    Fukuba S; Okada M; Nohara K; Iwata T
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth and amelogenin-like factors in periodontal wound healing. A systematic review.
    Giannobile WV; Somerman MJ
    Ann Periodontol; 2003 Dec; 8(1):193-204. PubMed ID: 14971254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium Orthophosphate-Based Bioceramics.
    Dorozhkin SV
    Materials (Basel); 2013 Sep; 6(9):3840-3942. PubMed ID: 28788309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Droplet microfluidics as a tool for production of bioactive calcium phosphate microparticles with controllable physicochemical properties.
    Galván-Chacón VP; Costa L; Barata D; Habibovic P
    Acta Biomater; 2021 Jul; 128():486-501. PubMed ID: 33882356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A post-market surveillance analysis of the safety of hydroxyapatite-derived products as bone graft extenders or substitutes for spine fusion.
    Barbanti Brodano G; Griffoni C; Zanotti B; Gasbarrini A; Bandiera S; Ghermandi R; Boriani S
    Eur Rev Med Pharmacol Sci; 2015 Oct; 19(19):3548-55. PubMed ID: 26502842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graft options in posterolateral and posterior interbody lumbar fusion.
    Rihn JA; Kirkpatrick K; Albert TJ
    Spine (Phila Pa 1976); 2010 Aug; 35(17):1629-39. PubMed ID: 20628336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-Dimensional Bone Substitutes for Oral and Maxillofacial Surgery: Biological and Structural Characterization.
    Turco G; Porrelli D; Marsich E; Vecchies F; Lombardi T; Stacchi C; Di Lenarda R
    J Funct Biomater; 2018 Nov; 9(4):. PubMed ID: 30413004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Biological value of various bone substitutes in the treatment of bone defects. Animal experiment studies].
    Siebert HR; Wagner K; Rueger JM
    Unfallchirurgie; 1986 Apr; 12(2):98-100. PubMed ID: 3012843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guided tissue regeneration for periodontal infra-bony defects.
    Needleman IG; Worthington HV; Giedrys-Leeper E; Tucker RJ
    Cochrane Database Syst Rev; 2006 Apr; (2):CD001724. PubMed ID: 16625546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.