BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29900167)

  • 1. A Force Balanced Fragmentation Method for
    Xu M; Zhu T; Zhang JZH
    Front Chem; 2018; 6():189. PubMed ID: 29900167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
    Liu J; Zhu T; Wang X; He X; Zhang JZ
    J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fragment Quantum Mechanical Method for Metalloproteins.
    Xu M; He X; Zhu T; Zhang JZH
    J Chem Theory Comput; 2019 Feb; 15(2):1430-1439. PubMed ID: 30620584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins.
    Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X
    J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy.
    He X; Zhang JZ
    J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids.
    Liu J; He X
    Phys Chem Chem Phys; 2020 Jun; 22(22):12341-12367. PubMed ID: 32459230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs.
    Shen C; Wang X; He X
    Front Chem; 2021; 9():801062. PubMed ID: 35004616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase.
    Wang X; He X
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.
    Timko J; Kuyucak S
    J Chem Phys; 2012 Nov; 137(20):205106. PubMed ID: 23206041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.
    Jin X; Zhang JZ; He X
    J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum mechanical computational method for modeling electrostatic and solvation effects of protein.
    Wang X; Li Y; Gao Y; Yang Z; Lu C; Zhu T
    Sci Rep; 2018 Apr; 8(1):5475. PubMed ID: 29615707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory.
    Antony J; Grimme S
    J Comput Chem; 2012 Aug; 33(21):1730-9. PubMed ID: 22570225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules.
    Chen XH; Zhang DW; Zhang JZ
    J Chem Phys; 2004 Jan; 120(2):839-44. PubMed ID: 15267920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Advance in Computational Chemistry:  Full Quantum Mechanical ab Initio Computation of Streptavidin-Biotin Interaction Energy.
    Zhang DW; Xiang Y; Zhang JZ
    J Phys Chem B; 2003 Nov; 107(44):12039-41. PubMed ID: 26317889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.