BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29900279)

  • 1. Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution.
    Kono H
    Data Brief; 2018 Jun; 18():1088-1098. PubMed ID: 29900279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains.
    Kono H; Fujita S; Tajima K
    Carbohydr Polym; 2017 Feb; 157():728-738. PubMed ID: 27987985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR characterization of sodium carboxymethyl cellulose: Substituent distribution and mole fraction of monomers in the polymer chains.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Aug; 146():1-9. PubMed ID: 27112844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of mole fractions of ethyl-cellulose-containing monomers by NMR.
    Kono H
    Carbohydr Res; 2017 Jun; 445():51-60. PubMed ID: 28402900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances.
    Kono H; Oka C; Kishimoto R; Fujita S
    Carbohydr Polym; 2017 Aug; 170():23-32. PubMed ID: 28521991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ¹H and ¹³C chemical shift assignment of the monomers that comprise carboxymethyl cellulose.
    Kono H
    Carbohydr Polym; 2013 Sep; 97(2):384-90. PubMed ID: 23911461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance.
    Kono H; Numata J
    Carbohydr Res; 2020 Sep; 495():108067. PubMed ID: 32739678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Oct; 150():241-9. PubMed ID: 27312635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy.
    Kono H
    Carbohydr Res; 2013 Jun; 375():136-44. PubMed ID: 23707362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.
    Kono H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 118():91-100. PubMed ID: 25542112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional NMR data of a water-soluble β-(1→3, 1→6)-glucan from
    Kono H; Kondo N; Hirabayashi K; Ogata M; Totani K; Ikematsu S; Osada M
    Data Brief; 2017 Dec; 15():382-388. PubMed ID: 29854896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced characterization of regioselectively substituted methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy.
    Berruyer P; Gericke M; Moutzouri P; Jakobi D; Bardet M; Karlson L; Schantz S; Heinze T; Emsley L
    Carbohydr Polym; 2021 Jun; 262():117944. PubMed ID: 33838821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations.
    Wu Z; Collins AM; Jayaraman A
    Biomacromolecules; 2024 Mar; 25(3):1682-1695. PubMed ID: 38417021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses and comparison of 2,6-di-O-methyl celluloses from natural and synthetic celluloses.
    Kamitakahara H; Koschella A; Mikawa Y; Nakatsubo F; Heinze T; Klemm D
    Macromol Biosci; 2008 Jul; 8(7):690-700. PubMed ID: 18383569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.
    Idström A; Schantz S; Sundberg J; Chmelka BF; Gatenholm P; Nordstierna L
    Carbohydr Polym; 2016 Oct; 151():480-487. PubMed ID: 27474592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose.
    Richardson S; Andersson T; Brinkmalm G; Wittgren B
    Anal Chem; 2003 Nov; 75(22):6077-83. PubMed ID: 14615984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.
    Roslund MU; Säwén E; Landström J; Rönnols J; Jonsson KH; Lundborg M; Svensson MV; Widmalm G
    Carbohydr Res; 2011 Aug; 346(11):1311-9. PubMed ID: 21621752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data of
    Wang J; Jiang JZ; Chen W; Bai ZW
    Data Brief; 2016 Jun; 7():1228-1236. PubMed ID: 28795121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrected solid-state
    Zheng Z; Su Y; Schmidt-Rohr K
    Magn Reson Chem; 2023 Nov; 61(11):595-605. PubMed ID: 37649159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.