These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29900343)
21. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Melese T; Belay T Glob Chall; 2022 Jan; 6(1):2100068. PubMed ID: 35024167 [TBL] [Abstract][Full Text] [Related]
22. Mapping coastal groundwater potential zones using remote sensing based AHP model in Al Qunfudhah region along Red Sea, Saudi Arabia. Alshehri F; Abd El-Hamid HT; Mohamed A Heliyon; 2024 Apr; 10(7):e28186. PubMed ID: 38560101 [TBL] [Abstract][Full Text] [Related]
23. Geospatial and multi-criteria decision approach of groundwater potential zone identification in Cuma sub-basin, Southern Ethiopia. Hagos YG; Andualem TG Heliyon; 2021 Sep; 7(9):e07963. PubMed ID: 34541360 [TBL] [Abstract][Full Text] [Related]
24. Planning rainwater conservation measures using geospatial and multi-criteria decision making tools. Singh LK; Jha MK; Chowdary VM Environ Sci Pollut Res Int; 2021 Jan; 28(2):1734-1751. PubMed ID: 32852715 [TBL] [Abstract][Full Text] [Related]
25. Data of remote sensing and GIS - to demarcate the potential sector of groundwater in Debre Berhan, Amhara region, Ethiopia. Bagyaraj M; Tenaw Mengistie A; Gnanachandrasamy G; Gemechu B Data Brief; 2019 Oct; 26():104542. PubMed ID: 31667303 [TBL] [Abstract][Full Text] [Related]
26. Delineating groundwater potential zones using integrated remote sensing and GIS in Lahore, Pakistan. Yousaf B; Javid K; Mahmood S; Habib W; Hussain S Environ Monit Assess; 2024 Sep; 196(10):884. PubMed ID: 39225827 [TBL] [Abstract][Full Text] [Related]
27. Groundwater potential mapping of Tawi River basin of Jammu District, India, using geospatial techniques. Asgher MS; Kumar N; Kumari M; Ahmad M; Sharma L; Naikoo MW Environ Monit Assess; 2022 Mar; 194(3):240. PubMed ID: 35237870 [TBL] [Abstract][Full Text] [Related]
28. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Arulbalaji P; Padmalal D; Sreelash K Sci Rep; 2019 Feb; 9(1):2082. PubMed ID: 30765790 [TBL] [Abstract][Full Text] [Related]
29. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, KwaZulu-Natal, South Africa. Ponnusamy D; Elumalai V Chemosphere; 2022 Nov; 307(Pt 4):136121. PubMed ID: 35995193 [TBL] [Abstract][Full Text] [Related]
30. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
31. Geo environmental green growth towards sustainable development in semi-arid regions using physicochemical and geospatial approaches. Badapalli PK; Nakkala AB; Kottala RB; Gugulothu S Environ Sci Pollut Res Int; 2024 Sep; 31(41):54089-54106. PubMed ID: 36478552 [TBL] [Abstract][Full Text] [Related]
32. Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin. Baghel S; Tripathi MP; Khalkho D; Al-Ansari N; Kumar A; Elbeltagi A Sci Rep; 2023 Jun; 13(1):9860. PubMed ID: 37331976 [TBL] [Abstract][Full Text] [Related]
33. Remote sensing, GIS, and analytic hierarchy process-based delineation and sustainable management of potential groundwater zones: a case study of Jhargram district, West Bengal, India. Guria R; Mishra M; Dutta S; da Silva RM; Santos CAG Environ Monit Assess; 2023 Dec; 196(1):95. PubMed ID: 38151669 [TBL] [Abstract][Full Text] [Related]
34. Mapping and identification of potential groundwater development zones of an alluvial aquifer in parts of Ghaggar and Upper Yamuna basins in India. Din SNU; Rishi MS; Kaur L; Sidhu N; Ahluwalia AS Environ Monit Assess; 2023 Jul; 195(8):973. PubMed ID: 37470843 [TBL] [Abstract][Full Text] [Related]
35. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Diriba D; Karuppannan S; Takele T; Husein M Heliyon; 2024 Feb; 10(3):e25532. PubMed ID: 38371977 [TBL] [Abstract][Full Text] [Related]
36. Distributed groundwater recharge potentials assessment based on GIS model and its dynamics in the crystalline rocks of South India. Fauzia ; Surinaidu L; Rahman A; Ahmed S Sci Rep; 2021 Jun; 11(1):11772. PubMed ID: 34083557 [TBL] [Abstract][Full Text] [Related]
37. GIS based site and structure selection model for groundwater recharge: a hydrogeomorphic approach. Vijay R; Sohony RA J Environ Sci Eng; 2009 Oct; 51(4):311-4. PubMed ID: 21117424 [TBL] [Abstract][Full Text] [Related]
38. Groundwater potential mapping in Jashore, Bangladesh. Fatema K; Joy MAR; Amin FMR; Sarkar SK Heliyon; 2023 Mar; 9(3):e13966. PubMed ID: 36925550 [TBL] [Abstract][Full Text] [Related]
39. Data on identification of desertified regions in Anantapur district, Southern India by NDVI approach using remote sensing and GIS. Kumar BP; Babu KR; Ramachandra M; Krupavathi C; Swamy BN; Sreenivasulu Y; Rajasekhar M Data Brief; 2020 Jun; 30():105560. PubMed ID: 32368593 [TBL] [Abstract][Full Text] [Related]
40. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Penki R; Basina SS; Tanniru SR Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]