BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29900878)

  • 1. Versatile set-up for non-invasive in vitro analysis of headspace VOCs.
    Traxler S; Bischoff AC; Trefz P; Schubert JK; Miekisch W
    J Breath Res; 2018 Jul; 12(4):041001. PubMed ID: 29900878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smell of cells: Volatile profiling of stem- and non-stem cell proliferation.
    Bischoff AC; Oertel P; Sukul P; Rimmbach C; David R; Schubert J; Miekisch W
    J Breath Res; 2018 Mar; 12(2):026014. PubMed ID: 29231842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.
    Oertel P; Bergmann A; Fischer S; Trefz P; Küntzel A; Reinhold P; Köhler H; Schubert JK; Miekisch W
    Biomed Chromatogr; 2018 Oct; 32(10):e4285. PubMed ID: 29761519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue.
    Klemenz AC; Meyer J; Ekat K; Bartels J; Traxler S; Schubert JK; Kamp G; Miekisch W; Peters K
    Cells; 2019 Jul; 8(7):. PubMed ID: 31295931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry.
    Yang X; Zhu W; Koziel JA; Cai L; Jenks WS; Laor Y; Leeuwen JH; Hoff SJ
    J Chromatogr A; 2015 Oct; 1414():31-40. PubMed ID: 26456221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-invasive method for in vivo skin volatile compounds sampling.
    Jiang R; Cudjoe E; Bojko B; Abaffy T; Pawliszyn J
    Anal Chim Acta; 2013 Dec; 804():111-9. PubMed ID: 24267071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic collection and analysis of volatile organic compounds from the headspace of cell cultures.
    Baranska A; Smolinska A; Boots AW; Dallinga JW; van Schooten FJ
    J Breath Res; 2015 Oct; 9(4):047102. PubMed ID: 26469548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Volatile Organic Compound Signatures of Mycobacterium avium subsp. paratuberculosis.
    Bergmann A; Trefz P; Fischer S; Klepik K; Walter G; Steffens M; Ziller M; Schubert JK; Reinhold P; Köhler H; Miekisch W
    PLoS One; 2015; 10(4):e0123980. PubMed ID: 25915653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species.
    Küntzel A; Oertel P; Fischer S; Bergmann A; Trefz P; Schubert J; Miekisch W; Reinhold P; Köhler H
    PLoS One; 2018; 13(3):e0194348. PubMed ID: 29558492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry.
    Gerritsen MG; Brinkman P; Escobar N; Bos LD; de Heer K; Meijer M; Janssen HG; de Cock H; Wösten HAB; Visser CE; van Oers MHJ; Sterk PJ
    Med Mycol; 2018 Feb; 56(2):253-256. PubMed ID: 28525576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS as a process analytical technology (PAT) tool for monitoring the cultivation of C. tetani.
    Ghader M; Shokoufi N; Es-Haghi A; Kargosha K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():222-232. PubMed ID: 29550684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures.
    Yamaguchi MS; McCartney MM; Linderholm AL; Ebeler SE; Schivo M; Davis CE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1090():36-42. PubMed ID: 29783172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition of Volatile Compounds by Gas Chromatography-Mass Spectrometry (GC-MS).
    Vallarino JG; Erban A; Fehrle I; Fernie AR; Kopka J; Osorio S
    Methods Mol Biol; 2018; 1778():225-239. PubMed ID: 29761442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Needle Trap Device as a New Sampling and Preconcentration Approach for Volatile Organic Compounds of Herbal Medicines and its Application to the Analysis of Volatile Components in Viola tianschanica.
    Qin Y; Pang Y; Cheng Z
    Phytochem Anal; 2016 Nov; 27(6):364-374. PubMed ID: 27687791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological variability in volatile organic compounds (VOCs) in exhaled breath and released from faeces due to nutrition and somatic growth in a standardized caprine animal model.
    Fischer S; Trefz P; Bergmann A; Steffens M; Ziller M; Miekisch W; Schubert JS; Köhler H; Reinhold P
    J Breath Res; 2015 May; 9(2):027108. PubMed ID: 25971714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study.
    Schallschmidt K; Becker R; Jung C; Bremser W; Walles T; Neudecker J; Leschber G; Frese S; Nehls I
    J Breath Res; 2016 Oct; 10(4):046007. PubMed ID: 27732569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study.
    Nizio KD; Perrault KA; Troobnikoff AN; Ueland M; Shoma S; Iredell JR; Middleton PG; Forbes SL
    J Breath Res; 2016 Apr; 10(2):026008. PubMed ID: 27120170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.