These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29901228)

  • 1. Ultrastructure of tendon rupture depends on strain rate and tendon type.
    Chambers NC; Herod TW; Veres SP
    J Orthop Res; 2018 Nov; 36(11):2842-2850. PubMed ID: 29901228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of testing temperature on the nanostructural response of tendon to tensile mechanical overload.
    KarisAllen JJ; Veres SP
    J Biomech; 2020 May; 104():109720. PubMed ID: 32156441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of overuse tendinopathy: A new descriptive model for the initiation of tendon damage during cyclic loading.
    Herod TW; Veres SP
    J Orthop Res; 2018 Jan; 36(1):467-476. PubMed ID: 28598009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In tendons, differing physiological requirements lead to functionally distinct nanostructures.
    Quigley AS; Bancelin S; Deska-Gauthier D; Légaré F; Kreplak L; Veres SP
    Sci Rep; 2018 Mar; 8(1):4409. PubMed ID: 29535366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional ultrastructure reconstruction of tendinous components at the bifurcation of the bovine superficial digital flexor tendon using array and STEM tomographies.
    Takahashi N; Kametani K; Ota R; Tangkawattana P; Iwasaki T; Hasegawa Y; Ueda H; Hosotani M; Watanabe T
    J Anat; 2021 Jan; 238(1):63-72. PubMed ID: 32794178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single collagen fibrils isolated from high stress and low stress tendons show differing susceptibility to enzymatic degradation by the interstitial collagenase matrix metalloproteinase-1 (MMP-1).
    Gsell KY; Veres SP; Kreplak L
    Matrix Biol Plus; 2023 Jun; 18():100129. PubMed ID: 36915648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibril size and crimp morphology in ruptured and intact Achilles tendons.
    Magnusson SP; Qvortrup K; Larsen JO; Rosager S; Hanson P; Aagaard P; Krogsgaard M; Kjaer M
    Matrix Biol; 2002 Jun; 21(4):369-77. PubMed ID: 12128074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model.
    Willett TL; Labow RS; Lee JM
    J Orthop Res; 2008 Dec; 26(12):1605-10. PubMed ID: 18524005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing collagen fibrils molecular damage after a single stretch-release cycle.
    Iqbal SMA; Deska-Gauthier D; Kreplak L
    Soft Matter; 2019 Aug; 15(30):6237-6246. PubMed ID: 31334527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the local denaturation of collagen fibrils during the mechanical rupture of human tendons.
    Steven FS; Minns RJ
    Injury; 1975 May; 6(4):317-9. PubMed ID: 1140833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and histochemical analysis of a case of superficial digital flexor tendon injury in the horse.
    Kobayashi A; Sugisaka M; Takehana K; Yamaguchi M; Eerdunchaolu ; Iwasa EK; Abe M
    J Comp Pathol; 1999 May; 120(4):403-14. PubMed ID: 10208736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.