These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 29901252)

  • 1. Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting.
    Fang Y; Xu Y; Li X; Ma Y; Wang X
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9749-9753. PubMed ID: 29901252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Pot Synthesis of CoS
    Li X; Wang J; Xia J; Fang Y; Hou Y; Fu X; Shalom M; Wang X
    ChemSusChem; 2022 Apr; 15(8):e202200330. PubMed ID: 35212173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO
    Wang L; Si W; Ye Y; Wang S; Hou F; Hou X; Cai H; Dou SX; Liang J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44184-44194. PubMed ID: 34499482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coating Polymeric Carbon Nitride on Conductive Carbon Cloth to Promote Charge Separation for Photocatalytic Water Splitting.
    Zheng D; Yang L; Chen W; Fang Y; Wang X
    ChemSusChem; 2021 Sep; 14(18):3821-3824. PubMed ID: 34291587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting.
    Zhang J; Zhang J; Dong C; Xia Y; Jiang L; Wang G; Wang R; Chen J
    Small; 2023 Aug; 19(34):e2208049. PubMed ID: 37127867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly Coupled Metal Oxide/Reassembled Carbon Nitride/Co-Pi Heterostructures for Efficient Photoelectrochemical Water Splitting.
    An X; Hu C; Lan H; Liu H; Qu J
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6424-6432. PubMed ID: 29389108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO₂-ZnO Nanorod Film.
    Abd Samad NA; Lai CW; Lau KS; Abd Hamid SB
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Dry Coating of Hybrid ZnO-WO
    Malik MS; Roy D; Chun DM; Abd-Elrahim AG
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting.
    Liu CF; Lu YJ; Hu CC
    ACS Omega; 2018 Mar; 3(3):3429-3439. PubMed ID: 31458595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation.
    Long X; Wang C; Wei S; Wang T; Jin J; Ma J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2452-2459. PubMed ID: 31845790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability.
    Wang R; Li X; Wang L; Zhao X; Yang G; Li A; Wu C; Shen Q; Zhou Y; Zou Z
    Nanoscale; 2018 Nov; 10(41):19621-19627. PubMed ID: 30325386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of Polymeric Carbon Nitride Photoanodes with Increased Surface Valence Electrons for Solar Water Splitting.
    Fang Y; Li X; Wang X
    ChemSusChem; 2019 Jun; 12(12):2605-2608. PubMed ID: 30773848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting.
    Yu J; Kim J
    Chemosphere; 2022 Jan; 287(Pt 3):132168. PubMed ID: 34826931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.