BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 29901257)

  • 1. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.
    Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA
    Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors.
    Zhou S; Li Y; Hou T
    J Chem Inf Model; 2013 Apr; 53(4):982-96. PubMed ID: 23506306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Novel PI3Kδ Selective Inhibitors by SVM-Based Multistage Virtual Screening and Molecular Dynamics Simulations.
    Liang JW; Wang S; Wang MY; Li SL; Li WQ; Meng FH
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning.
    Lee K; Kim D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31703452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective and potent small-molecule inhibitors of PI3Ks.
    Jeong Y; Kwon D; Hong S
    Future Med Chem; 2014 May; 6(7):737-56. PubMed ID: 24941870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Preparation Automatic Protocol for High-Throughput Inverse Virtual Screening: Accelerating the Target Identification by Computational Methods.
    De Vita S; Lauro G; Ruggiero D; Terracciano S; Riccio R; Bifulco G
    J Chem Inf Model; 2019 Nov; 59(11):4678-4690. PubMed ID: 31593460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening.
    Yu M; Gu Q; Xu J
    J Comput Aided Mol Des; 2018 Feb; 32(2):347-361. PubMed ID: 29306979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-QSAR, Virtual Screening, Docking and Design of Dual PI3K/mTOR Inhibitors with Enhanced Antiproliferative Activity.
    Oluić J; Nikolic K; Vucicevic J; Gagic Z; Filipic S; Agbaba D
    Comb Chem High Throughput Screen; 2017 Aug; 20(4):292-303. PubMed ID: 28460621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking.
    Caporuscio F; Tinivella A; Restelli V; Semrau MS; Pinzi L; Storici P; Broggini M; Rastelli G
    Future Med Chem; 2018 Jul; 10(13):1545-1553. PubMed ID: 29766737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The current limits in virtual screening and property prediction.
    Hutter MC
    Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies.
    Berishvili VP; Kuimov AN; Voronkov AE; Radchenko EV; Kumar P; Choonara YE; Pillay V; Kamal A; Palyulin VA
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32664504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a novel aminopyrazine series as selective PI3Kα inhibitors.
    Barlaam B; Cosulich S; Fitzek M; Germain H; Green S; Hanson LL; Harris CS; Hancox U; Hudson K; Lambert-van der Brempt C; Lamorlette M; Magnien F; Ouvry G; Page K; Ruston L; Ward L; Delouvrié B
    Bioorg Med Chem Lett; 2017 Jul; 27(13):3030-3035. PubMed ID: 28526367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations.
    Polishchuk P; Kutlushina A; Bashirova D; Mokshyna O; Madzhidov T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.