These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29902001)

  • 1. New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase.
    Ding H; Wu X; Pan J; Hu X; Gong D; Zhang G
    J Agric Food Chem; 2018 Jul; 66(27):7065-7075. PubMed ID: 29902001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding Interaction of Betulinic Acid to α-Glucosidase and Its Alleviation on Postprandial Hyperglycemia.
    Chen S; Lin B; Gu J; Yong T; Gao X; Xie Y; Xiao C; Zhan JY; Wu Q
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.
    Zhang BW; Xing Y; Wen C; Yu XX; Sun WL; Xiu ZL; Dong YS
    Bioorg Med Chem Lett; 2017 Nov; 27(22):5065-5070. PubMed ID: 28964635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms.
    Salau VF; Erukainure OL; Aljoundi A; Akintemi EO; Elamin G; Odewole OA
    SAR QSAR Environ Res; 2024 May; 35(5):411-432. PubMed ID: 38764437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase.
    Ding H; Hu X; Xu X; Zhang G; Gong D
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1844-1855. PubMed ID: 29030193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of α-glucosidase by vitamin D3 and the effect of vitamins B1 and B2.
    Peng X; Zhang G; Zeng L
    Food Funct; 2016 Feb; 7(2):982-91. PubMed ID: 26744303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Betulinic acid derivatives: a new class of α-glucosidase inhibitors and LPS-stimulated nitric oxide production inhibition on mouse macrophage RAW 264.7 cells.
    Gundoju N; Bokam R; Yalavarthi NR; Azad R; Ponnapalli MG
    Nat Prod Res; 2019 Sep; 33(18):2618-2622. PubMed ID: 29683341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-synthesis of C28-modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase inhibitors.
    Liu X; Zang X; Yin X; Yang W; Huang J; Huang J; Yu C; Ke C; Hong Y
    Bioorg Chem; 2020 Apr; 97():103694. PubMed ID: 32120080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into an α-Glucosidase Inhibitory Profile of 4,4-Dimethylsterols by Multispectral Techniques and Molecular Docking.
    Xie L; Zhang T; Karrar E; Zheng L; Xie D; Jin J; Chang M; Wang X; Jin Q
    J Agric Food Chem; 2021 Dec; 69(50):15252-15260. PubMed ID: 34898206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of corosolic acid on α-glucosidase: kinetics, interaction mechanism, and molecular simulation.
    Ni M; Pan J; Hu X; Gong D; Zhang G
    J Sci Food Agric; 2019 Oct; 99(13):5881-5889. PubMed ID: 31206698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties.
    Zeng L; Zhang G; Liao Y; Gong D
    Food Funct; 2016 Sep; 7(9):3953-63. PubMed ID: 27549567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies.
    Chen JG; Wu SF; Zhang QF; Yin ZP; Zhang L
    Int J Biol Macromol; 2020 Jan; 143():696-703. PubMed ID: 31521662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triterpenic Acids as Non-Competitive α-Glucosidase Inhibitors from
    Ur Rehman N; Halim SA; Al-Azri M; Khan M; Khan A; Rafiq K; Al-Rawahi A; Csuk R; Al-Harrasi A
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32408614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentacylic triterpenes from
    Elsbaey M; Mwakalukwa R; Shimizu K; Miyamoto T
    Nat Prod Res; 2021 May; 35(9):1436-1444. PubMed ID: 31434504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new feruloylfriedelinol from the stems of
    Limtragool OA; Pitchuanchom S; Saensouk S; Poopasit K; Kanokmedhakul K; Kanokmedhakul S
    Nat Prod Res; 2024 Sep; 38(18):3269-3274. PubMed ID: 37287380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical constituents of gold-red apple and their α-glucosidase inhibitory activities.
    He QQ; Yang L; Zhang JY; Ma JN; Ma CM
    J Food Sci; 2014 Oct; 79(10):C1970-83. PubMed ID: 25227714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the interaction of 2,4-dimethoxy-6,7-dihydroxyphenanthrene with α-glucosidase using inhibition kinetics, CD, FT-IR and molecular docking methods.
    Zhang S; Qiu B; Zhu J; Khan MZH; Liu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():13-18. PubMed ID: 29857256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses.
    Liu D; Cao X; Kong Y; Mu T; Liu J
    Int J Biol Macromol; 2021 Jan; 166():259-267. PubMed ID: 33115652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Glucosidase inhibitory triterpenoids from Euonymus fortunei.
    Zhao K; Sun S; Wang H; Wang L; Qin G; Fan J; Guo M; Wang W
    Bioorg Chem; 2021 Jun; 111():104980. PubMed ID: 34004587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism.
    Liu Y; Zhu J; Yu J; Chen X; Zhang S; Cai Y; Li L
    Food Chem; 2021 Aug; 353():129448. PubMed ID: 33711702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.