BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29902533)

  • 1. Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials.
    Hong X; Annamalai RT; Kemerer TS; Deng CX; Stegemann JP
    Biomaterials; 2018 Sep; 178():11-22. PubMed ID: 29902533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant acoustic rheometry for non-contact characterization of viscoelastic biomaterials.
    Hobson EC; Li W; Juliar BA; Putnam AJ; Stegemann JP; Deng CX
    Biomaterials; 2021 Feb; 269():120676. PubMed ID: 33485213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of functionalized PHEMA micro- and nano-particles on the viscoelastic properties of fibrin-agarose biomaterials.
    Scionti G; Rodriguez-Arco L; Lopez-Lopez MT; Medina-Castillo AL; Garzón I; Alaminos M; Toledano M; Osorio R
    J Biomed Mater Res A; 2018 Mar; 106(3):738-745. PubMed ID: 29052310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ramp-Creep Ultrasound Viscoelastography for Measuring Viscoelastic Parameters of Materials.
    Lin CY
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
    Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL
    J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and application of a nondestructive and contactless method for rheological evaluation of biomaterials.
    Ceccaldi C; Strandman S; Hui E; Montagnon E; Schmitt C; Hadj Henni A; Lerouge S
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2565-2573. PubMed ID: 27690332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies.
    Cacopardo L; Guazzelli N; Ahluwalia A
    Tissue Eng Part B Rev; 2022 Aug; 28(4):912-925. PubMed ID: 34555953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials.
    Tirella A; Mattei G; Ahluwalia A
    J Biomed Mater Res A; 2014 Oct; 102(10):3352-60. PubMed ID: 23946054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications.
    Campos F; Bonhome-Espinosa AB; Vizcaino G; Rodriguez IA; Duran-Herrera D; López-López MT; Sánchez-Montesinos I; Alaminos M; Sánchez-Quevedo MC; Carriel V
    Biomed Mater; 2018 Feb; 13(2):025021. PubMed ID: 29420310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.
    Roberts JJ; Earnshaw A; Ferguson VL; Bryant SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):158-69. PubMed ID: 21714081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction.
    Marozas IA; Anseth KS; Cooper-White JJ
    Biomaterials; 2019 Dec; 223():119430. PubMed ID: 31493696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.
    Mattei G; Gruca G; Rijnveld N; Ahluwalia A
    J Mech Behav Biomed Mater; 2015 Oct; 50():150-9. PubMed ID: 26143307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.
    Suriano R; Griffini G; Chiari M; Levi M; Turri S
    J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration.
    Erisken C; Kalyon DM; Zhou J; Kim SG; Mao JJ
    J Endod; 2015 Oct; 41(10):1711-7. PubMed ID: 26321063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale elasticity mapping of biological samples in 3D at optical resolution.
    Regan K; LeBourdais R; Banerji R; Zhang S; Muhvich J; Zheng S; Nia HT
    Acta Biomater; 2024 Mar; 176():250-266. PubMed ID: 38160857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications.
    Ahearne M; Yang Y; El Haj AJ; Then KY; Liu KK
    J R Soc Interface; 2005 Dec; 2(5):455-63. PubMed ID: 16849205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications.
    Campos F; Bonhome-Espinosa AB; García-Martínez L; Durán JD; López-López MT; Alaminos M; Sánchez-Quevedo MC; Carriel V
    Biomed Mater; 2016 Sep; 11(5):055004. PubMed ID: 27680194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.