BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29902615)

  • 21. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.
    Pollard TD; Bhandari D; Maupin P; Wachsstock D; Weeds AG; Zot HG
    Biophys J; 1993 Feb; 64(2):454-71. PubMed ID: 8457671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myosin crossbridge configurations in equilibrium states of vertebrate skeletal muscle. Heads swing axially or turn upside-down between resting and rigor.
    Harford J; Cantino M; Chew M; Denny R; Hudson L; Luther P; Mendelson R; Morris E; Squire J
    Adv Exp Med Biol; 1998; 453():297-308. PubMed ID: 9889842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin.
    Uyeda TQ; Kron SJ; Spudich JA
    J Mol Biol; 1990 Aug; 214(3):699-710. PubMed ID: 2143785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unitary distance of actin-myosin sliding studied using an in vitro force-movement assay system combined with ATP iontophoresis.
    Oiwa K; Kawakami T; Sugi H
    J Biochem; 1993 Jul; 114(1):28-32. PubMed ID: 8407871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loose coupling between chemical and mechanical reactions in actomyosin energy transduction.
    Yanagida T
    Adv Biophys; 1990; 26():75-95. PubMed ID: 2082730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of the work done by ATP-induced actin-myosin sliding on the initial baseline force: its implications for kinetic properties of myosin heads in muscle contraction.
    Sugi H; Oiwa K; Chaen S
    Adv Exp Med Biol; 1993; 332():303-9; discussion 310-1. PubMed ID: 8109344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.
    Iwase K; Tanaka M; Hirose K; Uyeda TQP; Honda H
    PLoS One; 2017; 12(7):e0181171. PubMed ID: 28742155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150 A or turn upside down to reach rigor.
    Hudson L; Harford JJ; Denny RC; Squire JM
    J Mol Biol; 1997 Oct; 273(2):440-55. PubMed ID: 9344751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actomyosin interaction at low ATP concentrations.
    Maffei M; Longa E; Sabatini A; Vacca A; Iotti S
    Eur Biophys J; 2017 Mar; 46(2):195-202. PubMed ID: 28039513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientation changes of the myosin light chain domain during filament sliding in active and rigor muscle.
    Hopkins SC; Sabido-David C; van der Heide UA; Ferguson RE; Brandmeier BD; Dale RE; Kendrick-Jones J; Corrie JE; Trentham DR; Irving M; Goldman YE
    J Mol Biol; 2002 May; 318(5):1275-91. PubMed ID: 12083517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myosin subfragment-1 is sufficient to move actin filaments in vitro.
    Toyoshima YY; Kron SJ; McNally EM; Niebling KR; Toyoshima C; Spudich JA
    Nature; 1987 Aug 6-12; 328(6130):536-9. PubMed ID: 2956522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single turnovers of fluorescent ATP bound to bipolar myosin filament during actin filaments sliding.
    Maruta T; Kobatake T; Okubo H; Chaen S
    Biophysics (Nagoya-shi); 2013; 9():13-20. PubMed ID: 27493536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D structure of relaxed fish muscle myosin filaments by single particle analysis.
    Al-Khayat HA; Morris EP; Kensler RW; Squire JM
    J Struct Biol; 2006 Aug; 155(2):202-17. PubMed ID: 16731006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis.
    Dergez T; Lorinczy D; Könczöl F; Farkas N; Belagyi J
    BMC Struct Biol; 2007 Jun; 7():41. PubMed ID: 17588264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Submillisecond rotational dynamics of spin-labeled myosin heads in myofibrils.
    Thomas DD; Ishiwata S; Seidel JC; Gergely J
    Biophys J; 1980 Dec; 32(3):873-89. PubMed ID: 6266538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal activation energy for bidirectional movement of actin along bipolar tracks of myosin filaments.
    Okubo H; Iwai M; Iwai S; Chaen S
    Biochem Biophys Res Commun; 2010 May; 396(2):539-42. PubMed ID: 20435018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay.
    Harada Y; Sakurada K; Aoki T; Thomas DD; Yanagida T
    J Mol Biol; 1990 Nov; 216(1):49-68. PubMed ID: 2146398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sliding movement of single actin filaments on one-headed myosin filaments.
    Harada Y; Noguchi A; Kishino A; Yanagida T
    Nature; 1987 Apr 23-29; 326(6115):805-8. PubMed ID: 3574452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.