These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2990335)

  • 1. Molecular assessment of S1 endonuclease-resistant snapback hairpin loops generated by DNA polymerase I during the in-vitro nick translation reaction.
    Norgard MV
    Appl Biochem Biotechnol; 1985 Feb; 11(1):1-15. PubMed ID: 2990335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA hairpin loops in solution. Correlation between primary structure, thermostability and reactivity with single-strand-specific nuclease from mung bean.
    Xodo LE; Manzini G; Quadrifoglio F; van der Marel G; van Boom J
    Nucleic Acids Res; 1991 Apr; 19(7):1505-11. PubMed ID: 2027758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nick-translation of metaphase chromosomes: in vitro labeling of nuclease-hypersensitive regions in chromosomes.
    Kuo MT; Plunkett W
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):854-8. PubMed ID: 3856236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexes of DNA hairpins and a single-stranded oligonucleotide detected by affinity chromatography and mung bean nuclease cleavage.
    Baumann U; Lehmann U; Schwellnus K; van Boom JH; Kuhn H
    Eur J Biochem; 1987 Dec; 170(1-2):267-72. PubMed ID: 2826156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis.
    Yoshizawa S; Ueda T; Ishido Y; Miura K; Watanabe K; Hirao I
    Nucleic Acids Res; 1994 Jun; 22(12):2217-21. PubMed ID: 8036147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation of DNA hairpins containing the EcoRI recognition site by hairpin loops of varying size and composition: physical (NMR and UV) and enzymatic (EcoRI) studies.
    Germann MW; Kalisch BW; Lundberg P; Vogel HJ; van de Sande JH
    Nucleic Acids Res; 1990 Mar; 18(6):1489-98. PubMed ID: 2326190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of T4 DNA ligase-catalyzed end joining after S1 endonuclease treatment on duplex DNA containing single-stranded portions.
    Shishido K; Ando T
    Biochim Biophys Acta; 1981 Nov; 656(1):123-7. PubMed ID: 6171303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of in situ nick translation of chromosomes using restriction endonucleases.
    Bullerdiek J; Dittmer J; Faehre A; Bartnitzke S
    Cytobios; 1986; 47(188):33-44. PubMed ID: 3019609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nick translation of mammalian DNA.
    Balmain A; Birnie GD
    Biochim Biophys Acta; 1979 Jan; 561(1):155-66. PubMed ID: 570419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of carcinogen-induced DNA breaks by nick translation in permeable cells.
    Nose K; Okamoto H
    Biochem Biophys Res Commun; 1983 Mar; 111(2):383-9. PubMed ID: 6188463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli β-clamp slows down DNA polymerase I dependent nick translation while accelerating ligation.
    Bhardwaj A; Ghose D; Thakur KG; Dutta D
    PLoS One; 2018; 13(6):e0199559. PubMed ID: 29924849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure model for the last two domains of single-stranded RNA phage Q beta.
    Beekwilder MJ; Nieuwenhuizen R; van Duin J
    J Mol Biol; 1995 Apr; 247(5):903-17. PubMed ID: 7723040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of digestion of human chromosomes by restriction endonucleases demonstrated by in situ nick translation.
    Sumner AT; Taggart MH; Mezzanotte R; Ferrucci L
    Histochem J; 1990 Dec; 22(12):639-52. PubMed ID: 1964155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient generation of displaced single-stranded DNA during nick translation.
    Lundquist RC; Olivera BM
    Cell; 1982 Nov; 31(1):53-60. PubMed ID: 6218882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric structure of five and six membered DNA hairpin loops.
    Baumann U; Chang S
    Mol Biol Rep; 1995-1996; 22(1):25-31. PubMed ID: 8858569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA strand breaks in rat tissues as detected by in situ nick translation.
    Iseki S
    Exp Cell Res; 1986 Dec; 167(2):311-26. PubMed ID: 3770092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hairpin opening by single-strand-specific nucleases.
    Kabotyanski EB; Zhu C; Kallick DA; Roth DB
    Nucleic Acids Res; 1995 Oct; 23(19):3872-81. PubMed ID: 7479030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiolabelling of DNA/polypeptide complexes in isolated bulk DNA and in residual nuclear matrix DNA by nick-translation.
    Werner D; Rest R
    Biochem Biophys Res Commun; 1987 Aug; 147(1):340-5. PubMed ID: 3632674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase H1 can catalyze RNA/DNA hybrid formation and cleavage with stable hairpin or duplex DNA oligomers.
    Li J; Wartell RM
    Biochemistry; 1998 Apr; 37(15):5154-61. PubMed ID: 9548746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
    Pearson CE; Tam M; Wang YH; Montgomery SE; Dar AC; Cleary JD; Nichol K
    Nucleic Acids Res; 2002 Oct; 30(20):4534-47. PubMed ID: 12384601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.