BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29903467)

  • 21. Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis.
    Bali V; Lazrak A; Guroji P; Matalon S; Bebok Z
    PLoS One; 2016; 11(5):e0155882. PubMed ID: 27214033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR.
    Veit G; Vaccarin C; Lukacs GL
    J Cyst Fibros; 2021 Sep; 20(5):895-898. PubMed ID: 33775603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination.
    Veit G; Roldan A; Hancock MA; Da Fonte DF; Xu H; Hussein M; Frenkiel S; Matouk E; Velkov T; Lukacs GL
    JCI Insight; 2020 Sep; 5(18):. PubMed ID: 32853178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipophilicity of the Cystic Fibrosis Drug, Ivacaftor (VX-770), and Its Destabilizing Effect on the Major CF-causing Mutation: F508del.
    Chin S; Hung M; Won A; Wu YS; Ahmadi S; Yang D; Elmallah S; Toutah K; Hamilton CM; Young RN; Viirre RD; Yip CM; Bear CE
    Mol Pharmacol; 2018 Aug; 94(2):917-925. PubMed ID: 29903751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1-BENZYLSPIRO[PIPERIDINE-4,1'-PYRIDO[3,4-b]indole] 'co-potentiators' for minimal function CFTR mutants.
    Son JH; Phuan PW; Zhu JS; Lipman E; Cheung A; Tsui KY; Tantillo DJ; Verkman AS; Haggie PM; Kurth MJ
    Eur J Med Chem; 2021 Jan; 209():112888. PubMed ID: 33092904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
    Pettit RS
    Ann Pharmacother; 2012; 46(7-8):1065-75. PubMed ID: 22739718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor.
    Xue X; Mutyam V; Tang L; Biswas S; Du M; Jackson LA; Dai Y; Belakhov V; Shalev M; Chen F; Schacht J; J Bridges R; Baasov T; Hong J; Bedwell DM; Rowe SM
    Am J Respir Cell Mol Biol; 2014 Apr; 50(4):805-16. PubMed ID: 24251786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Correctors and Potentiators Enhance Translational Readthrough in CFTR Nonsense Mutations.
    Mutyam V; Sharma J; Li Y; Peng N; Chen J; Tang LP; Falk Libby E; Singh AK; Conrath K; Rowe SM
    Am J Respir Cell Mol Biol; 2021 May; 64(5):604-616. PubMed ID: 33616476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging preclinical modulators developed for F508del-CFTR have the potential to be effective for ORKAMBI resistant processing mutants.
    Laselva O; Bartlett C; Popa A; Ouyang H; Gunawardena TNA; Gonska T; Moraes TJ; Bear CE
    J Cyst Fibros; 2021 Jan; 20(1):106-119. PubMed ID: 32741662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current development of CFTR potentiators in the last decade.
    Spanò V; Venturini A; Genovese M; Barreca M; Raimondi MV; Montalbano A; Galietta LJV; Barraja P
    Eur J Med Chem; 2020 Oct; 204():112631. PubMed ID: 32898816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KCa3.1 potentiation stimulates Cl
    Devor DC; Green MD; Bridges RJ
    Am J Physiol Cell Physiol; 2022 Oct; 323(4):C1215-C1230. PubMed ID: 36062876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function.
    Van Goor F; Yu H; Burton B; Hoffman BJ
    J Cyst Fibros; 2014 Jan; 13(1):29-36. PubMed ID: 23891399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level.
    Cui G; Stauffer BB; Imhoff BR; Rab A; Hong JS; Sorscher EJ; McCarty NA
    Sci Rep; 2019 Sep; 9(1):13460. PubMed ID: 31530897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators.
    Pyle LC; Ehrhardt A; Mitchell LH; Fan L; Ren A; Naren AP; Li Y; Clancy JP; Bolger GB; Sorscher EJ; Rowe SM
    Am J Physiol Lung Cell Mol Physiol; 2011 Oct; 301(4):L587-97. PubMed ID: 21724857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
    McPhail GL; Clancy JP
    Drugs Today (Barc); 2013 Apr; 49(4):253-60. PubMed ID: 23616952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.
    Park J; Khloya P; Seo Y; Kumar S; Lee HK; Jeon DK; Jo S; Sharma PK; Namkung W
    PLoS One; 2016; 11(2):e0149131. PubMed ID: 26863533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A common mechanism for CFTR potentiators.
    Yeh HI; Sohma Y; Conrath K; Hwang TC
    J Gen Physiol; 2017 Dec; 149(12):1105-1118. PubMed ID: 29079713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR.
    Wang Y; Liu J; Loizidou A; Bugeja LA; Warner R; Hawley BR; Cai Z; Toye AM; Sheppard DN; Li H
    Br J Pharmacol; 2014 Oct; 171(19):4490-503. PubMed ID: 24902474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rescue of CFTR NBD2 mutants N1303K and S1235R is influenced by the functioning of the autophagosome.
    Liu Q; Sabirzhanova I; Yanda MK; Bergbower EAS; Boinot C; Guggino WB; Cebotaru L
    J Cyst Fibros; 2018 Sep; 17(5):582-594. PubMed ID: 29936070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
    Yang H; Ma T
    Expert Opin Ther Pat; 2015; 25(9):991-1002. PubMed ID: 25971311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.