These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29903479)
1. Computer-aided prediction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound. Moon WK; Chen IL; Yi A; Bae MS; Shin SU; Chang RF Comput Methods Programs Biomed; 2018 Aug; 162():129-137. PubMed ID: 29903479 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images. Moon WK; Lee YW; Huang YS; Lee SH; Bae MS; Yi A; Huang CS; Chang RF Comput Methods Programs Biomed; 2017 Jul; 146():143-150. PubMed ID: 28688484 [TBL] [Abstract][Full Text] [Related]
3. Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks. Lee YW; Huang CS; Shih CC; Chang RF Comput Biol Med; 2021 Mar; 130():104206. PubMed ID: 33421823 [TBL] [Abstract][Full Text] [Related]
4. Adding contrast-enhanced ultrasound markers to conventional axillary ultrasound improves specificity for predicting axillary lymph node metastasis in patients with breast cancer. Du LW; Liu HL; Gong HY; Ling LJ; Wang S; Li CY; Zong M Br J Radiol; 2021 Feb; 94(1118):20200874. PubMed ID: 32976019 [TBL] [Abstract][Full Text] [Related]
5. A non-invasive preoperative prediction model for predicting axillary lymph node metastasis in breast cancer based on a machine learning approach: combining ultrasonographic parameters and breast gamma specific imaging features. Cai R; Deng L; Zhang H; Zhang H; Wu Q Radiat Oncol; 2024 May; 19(1):63. PubMed ID: 38802938 [TBL] [Abstract][Full Text] [Related]
6. Impact of preoperative ultrasonography and fine-needle aspiration of axillary lymph nodes on surgical management of primary breast cancer. Park SH; Kim MJ; Park BW; Moon HJ; Kwak JY; Kim EK Ann Surg Oncol; 2011 Mar; 18(3):738-44. PubMed ID: 20890729 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence assisted ultrasound for the non-invasive prediction of axillary lymph node metastasis in breast cancer. Wang X; Nie L; Zhu Q; Zuo Z; Liu G; Sun Q; Zhai J; Li J BMC Cancer; 2024 Jul; 24(1):910. PubMed ID: 39075447 [TBL] [Abstract][Full Text] [Related]
9. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences. Chai R; Ma H; Xu M; Arefan D; Cui X; Liu Y; Zhang L; Wu S; Xu K J Magn Reson Imaging; 2019 Oct; 50(4):1125-1132. PubMed ID: 30848041 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer. Zhao M; Wu Q; Guo L; Zhou L; Fu K Eur J Radiol; 2020 Aug; 129():109093. PubMed ID: 32512504 [TBL] [Abstract][Full Text] [Related]
11. Dual-modal computer-assisted evaluation of axillary lymph node metastasis in breast cancer patients on both real-time elastography and B-mode ultrasound. Zhang Q; Suo J; Chang W; Shi J; Chen M Eur J Radiol; 2017 Oct; 95():66-74. PubMed ID: 28987700 [TBL] [Abstract][Full Text] [Related]
12. False negative results in axillary lymph nodes by ultrasonography and ultrasonography-guided fine-needle aspiration in patients with invasive ductal carcinoma. Park SH; Kim EK; Park BW; Kim SI; Moon HJ; Kim MJ Ultraschall Med; 2013 Dec; 34(6):559-67. PubMed ID: 23258771 [TBL] [Abstract][Full Text] [Related]
13. Usefulness of preoperative breast magnetic resonance imaging with a dedicated axillary sequence for the detection of axillary lymph node metastasis in patients with early ductal breast cancer. Ahn HS; Jang M; Kim SM; La Yun B; Lee SH Radiol Med; 2019 Dec; 124(12):1220-1228. PubMed ID: 31422573 [TBL] [Abstract][Full Text] [Related]
14. Combining the Ultrasound Features of Primary Tumor and Axillary Lymph Nodes Can Reduce False-Negative Rate during the Prediction of High Axillary Node Burden in BI-RADS Category 4 or 5 Breast Cancer Lesions. Yi CB; Ding ZY; Deng J; Ye XH; Chen L; Zong M; Li CY Ultrasound Med Biol; 2020 Aug; 46(8):1941-1948. PubMed ID: 32451195 [TBL] [Abstract][Full Text] [Related]
15. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Carcinoma Using Radiomics Features Based on the Fat-Suppressed T2 Sequence. Tan H; Gan F; Wu Y; Zhou J; Tian J; Lin Y; Wang M Acad Radiol; 2020 Sep; 27(9):1217-1225. PubMed ID: 31879160 [TBL] [Abstract][Full Text] [Related]
16. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer. Bae MS; Shin SU; Song SE; Ryu HS; Han W; Moon WK Acta Radiol; 2018 Apr; 59(4):402-408. PubMed ID: 28748712 [TBL] [Abstract][Full Text] [Related]
17. High-resolution ultrasonographic features of axillary lymph node metastasis in patients with breast cancer. Choi YJ; Ko EY; Han BK; Shin JH; Kang SS; Hahn SY Breast; 2009 Apr; 18(2):119-22. PubMed ID: 19297159 [TBL] [Abstract][Full Text] [Related]
18. Correlation between Ultrasound Appearance of Small Breast Cancer and Axillary Lymph Node Metastasis. Yu X; Hao X; Wan J; Wang Y; Yu L; Liu B Ultrasound Med Biol; 2018 Feb; 44(2):342-349. PubMed ID: 29150365 [TBL] [Abstract][Full Text] [Related]
19. Imaging and pathology features to predict axillary tumor load in breast cancer. Nicolau P; Gamero R; Rodríguez-Arana A; Plancarte F; Alcántara R; Carreras R; Sabadell D; Vernet-Tomas M J Obstet Gynaecol Res; 2018 Feb; 44(2):331-336. PubMed ID: 29027318 [TBL] [Abstract][Full Text] [Related]
20. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study. Zhu Y; Ma Y; Zhai Z; Liu A; Wang Y; Zhang Y; Li H; Zhao M; Han P; Yin L; He N; Wu Y; Sechopoulos I; Ye Z; Caballo M Eur Radiol; 2024 Apr; 34(4):2576-2589. PubMed ID: 37782338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]