These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29903539)

  • 1. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment.
    Kao YH; Eisenberg MC
    Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study.
    Eisenberg MC; Jain HV
    J Theor Biol; 2017 Oct; 431():63-78. PubMed ID: 28733187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Practical Identifiability Analysis of Zika Epidemiological Models.
    Tuncer N; Marctheva M; LaBarre B; Payoute S
    Bull Math Biol; 2018 Aug; 80(8):2209-2241. PubMed ID: 29948883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models.
    Roosa K; Chowell G
    Theor Biol Med Model; 2019 Jan; 16(1):1. PubMed ID: 30642334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing dengue infection risk in the southern region of Taiwan: implications for control.
    Liao CM; Huang TL; Cheng YH; Chen WY; Hsieh NH; Chen SC; Chio CP
    Epidemiol Infect; 2015 Apr; 143(5):1059-72. PubMed ID: 25007831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of human movement in the transmission of vector-borne pathogens.
    Stoddard ST; Morrison AC; Vazquez-Prokopec GM; Paz Soldan V; Kochel TJ; Kitron U; Elder JP; Scott TW
    PLoS Negl Trop Dis; 2009 Jul; 3(7):e481. PubMed ID: 19621090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue.
    Li R; Xu L; Bjørnstad ON; Liu K; Song T; Chen A; Xu B; Liu Q; Stenseth NC
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3624-3629. PubMed ID: 30808752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter Identifiability of Fundamental Pharmacodynamic Models.
    Janzén DL; Bergenholm L; Jirstrand M; Parkinson J; Yates J; Evans ND; Chappell MJ
    Front Physiol; 2016; 7():590. PubMed ID: 27994553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.
    Eisenberg MC; Robertson SL; Tien JH
    J Theor Biol; 2013 May; 324():84-102. PubMed ID: 23333764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and practical identifiability analysis of outbreak models.
    Tuncer N; Le TT
    Math Biosci; 2018 May; 299():1-18. PubMed ID: 29477671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On Parameter Identifiability in Network-Based Epidemic Models.
    Kiss IZ; Simon PL
    Bull Math Biol; 2023 Jan; 85(3):18. PubMed ID: 36705777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity.
    Lee EC; Kelly MR; Ochocki BM; Akinwumi SM; Hamre KES; Tien JH; Eisenberg MC
    J Theor Biol; 2017 May; 420():68-81. PubMed ID: 28130096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease.
    Manore CA; Hickmann KS; Hyman JM; Foppa IM; Davis JK; Wesson DM; Mores CN
    J Biol Dyn; 2015; 9():52-72. PubMed ID: 25648061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China.
    Musa SS; Zhao S; Chan HS; Jin Z; He DH
    Math Biosci Eng; 2019 Apr; 16(5):3841-3863. PubMed ID: 31499639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making Predictions Using Poorly Identified Mathematical Models.
    Simpson MJ; Maclaren OJ
    Bull Math Biol; 2024 May; 86(7):80. PubMed ID: 38801489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.
    Tuncer N; Gulbudak H; Cannataro VL; Martcheva M
    Bull Math Biol; 2016 Sep; 78(9):1796-1827. PubMed ID: 27651156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis.
    Brouwer AF; Meza R; Eisenberg MC
    PLoS Comput Biol; 2017 Mar; 13(3):e1005431. PubMed ID: 28288156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations].
    Rydzanicz K; Kiewra D; Lonc E
    Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.