BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29904106)

  • 1. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing.
    Liu Z; Lu Z; Yang G; Huang S; Li G; Feng S; Liu Y; Li J; Yu W; Zhang Y; Chen J; Sun Q; Huang X
    Nat Commun; 2018 Jun; 9(1):2338. PubMed ID: 29904106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing.
    Li G; Liu X; Huang S; Zeng Y; Yang G; Lu Z; Zhang Y; Ma X; Wang L; Huang X; Liu J
    Mol Ther Nucleic Acids; 2019 Sep; 17():289-296. PubMed ID: 31279230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity.
    Wang P; Xu L; Gao Y; Han R
    Mol Ther; 2020 Jul; 28(7):1696-1705. PubMed ID: 32353322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells.
    Zhu XX; Pan JS; Lin T; Yang YC; Huang QY; Yang SP; Qu ZX; Lin ZS; Wen JC; Yan AF; Feng J; Liu L; Zhang XL; Lu JH; Tang DS
    Biotechnol Lett; 2022 Jan; 44(1):59-76. PubMed ID: 34997407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide profiling of adenine base editor specificity by EndoV-seq.
    Liang P; Xie X; Zhi S; Sun H; Zhang X; Chen Y; Chen Y; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Nat Commun; 2019 Jan; 10(1):67. PubMed ID: 30622278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting fidelity of adenine and cytosine base editors in mouse embryos.
    Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L
    Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos.
    Lee HK; Smith HE; Liu C; Willi M; Hennighausen L
    Commun Biol; 2020 Jan; 3(1):19. PubMed ID: 31925293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine base editor-based correction of the cardiac pathogenic Lmna c.1621C > T mutation in murine hearts.
    Yang L; Liu Z; Sun J; Chen Z; Gao F; Guo Y
    J Cell Mol Med; 2024 Feb; 28(4):e18145. PubMed ID: 38332517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminated sgRNAs-Based SurroGate System Greatly Enhances the Screening Efficiency of Plant Base-Edited Cells.
    Xu W; Yang Y; Liu Y; Kang G; Wang F; Li L; Lv X; Zhao S; Yuan S; Song J; Wu Y; Feng F; He X; Zhang C; Song W; Zhao J; Yang J
    Mol Plant; 2020 Jan; 13(1):169-180. PubMed ID: 31634585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA.
    Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum).
    Wang G; Xu Z; Wang F; Huang Y; Xin Y; Liang S; Li B; Si H; Sun L; Wang Q; Ding X; Zhu X; Chen L; Yu L; Lindsey K; Zhang X; Jin S
    BMC Biol; 2022 Feb; 20(1):45. PubMed ID: 35164736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope.
    Jiang T; Henderson JM; Coote K; Cheng Y; Valley HC; Zhang XO; Wang Q; Rhym LH; Cao Y; Newby GA; Bihler H; Mense M; Weng Z; Anderson DG; McCaffrey AP; Liu DR; Xue W
    Nat Commun; 2020 Apr; 11(1):1979. PubMed ID: 32332735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new compact adenine base editor generated through deletion of HNH and REC2 domain of SpCas9.
    Qian Y; Wang D; Niu W; Zhao D; Li J; Liu Z; Gao X; Han Y; Lai L; Li Z
    BMC Biol; 2023 Jul; 21(1):155. PubMed ID: 37434184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor.
    Lee SN; Jang HS; Woo JS
    Methods Mol Biol; 2023; 2606():123-133. PubMed ID: 36592312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos.
    Dang L; Zhou X; Zhong X; Yu W; Huang S; Liu H; Chen Y; Zhang W; Yuan L; Li L; Huang X; Li G; Liu J; Tong G
    Mol Ther; 2022 Jan; 30(1):175-183. PubMed ID: 33974999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.
    Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise A∙T to G∙C base editing in the allotetraploid rapeseed (Brassica napus L.) genome.
    Hu L; Zhai Y; Xu L; Wang J; Yang S; Sun Y; Yu K; He H; Fan C
    J Cell Physiol; 2022 Dec; 237(12):4544-4550. PubMed ID: 36256845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE.
    Zhao D; Jiang G; Li J; Chen X; Li S; Wang J; Zhou Z; Pu S; Dai Z; Ma Y; Bi C; Zhang X
    Nucleic Acids Res; 2022 Apr; 50(7):4161-4170. PubMed ID: 35349689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.