BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29904189)

  • 1. Mitigation of radiation myelopathy and reduction of microglial infiltration by Ramipril, ACE inhibitor.
    Clausi MG; Stessin AM; Tsirka SE; Ryu S
    Spinal Cord; 2018 Aug; 56(8):733-740. PubMed ID: 29904189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time.
    Ryu S; Kolozsvary A; Jenrow KA; Brown SL; Kim JH
    J Neurooncol; 2007 Apr; 82(2):119-24. PubMed ID: 17004100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat.
    Kim JH; Brown SL; Kolozsvary A; Jenrow KA; Ryu S; Rosenblum ML; Carretero OA
    Radiat Res; 2004 Feb; 161(2):137-42. PubMed ID: 14731077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of single doses of radiation on mouse spinal cord.
    Lo YC; McBride WH; Withers HR
    Int J Radiat Oncol Biol Phys; 1992; 22(1):57-63. PubMed ID: 1727130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation.
    Saager M; Hahn EW; Peschke P; Brons S; Huber PE; Debus J; Karger CP
    J Radiat Res; 2020 Sep; 61(5):791-798. PubMed ID: 32657322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo.
    Liu JL; Tian DS; Li ZW; Qu WS; Zhan Y; Xie MJ; Yu ZY; Wang W; Wu G
    Brain Res; 2010 Feb; 1316():101-11. PubMed ID: 20044983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of Ramipril and Bevacizumab to Mitigate Radiation-Induced Brain Necrosis: An Experimental Study.
    Erpolat OP; Demircan NV; Sarıbas GS; Kuzucu P; Senturk E; Elmas C; Borcek A; Kurt G
    World Neurosurg; 2020 Dec; 144():e210-e220. PubMed ID: 32822951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment.
    Lee TC; Greene-Schloesser D; Payne V; Diz DI; Hsu FC; Kooshki M; Mustafa R; Riddle DR; Zhao W; Chan MD; Robbins ME
    Radiat Res; 2012 Jul; 178(1):46-56. PubMed ID: 22687052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus.
    Jenrow KA; Brown SL; Liu J; Kolozsvary A; Lapanowski K; Kim JH
    Radiat Oncol; 2010 Feb; 5():6. PubMed ID: 20122169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional differences in radiosensitivity across the rat cervical spinal cord.
    Bijl HP; van Luijk P; Coppes RP; Schippers JM; Konings AW; van Der Kogel AJ
    Int J Radiat Oncol Biol Phys; 2005 Feb; 61(2):543-51. PubMed ID: 15667978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment.
    Jenrow KA; Brown SL; Lapanowski K; Naei H; Kolozsvary A; Kim JH
    Radiat Res; 2013 May; 179(5):549-56. PubMed ID: 23560629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential radiation effect in tumor and normal tissue after treatment with ramipril, an angiotensin-converting enzyme inhibitor.
    Kohl RR; Kolozsvary A; Brown SL; Zhu G; Kim JH
    Radiat Res; 2007 Oct; 168(4):440-5. PubMed ID: 17903031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis.
    Jenrow KA; Liu J; Brown SL; Kolozsvary A; Lapanowski K; Kim JH
    J Neurooncol; 2011 Feb; 101(3):449-56. PubMed ID: 20617366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord.
    Pop LA; van der Plas M; Skwarchuk MW; Hanssen AE; van der Kogel AJ
    Radiother Oncol; 1997 Jan; 42(1):59-67. PubMed ID: 9132828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-irradiation tolerance in the rat spinal cord: influence of level of initial damage.
    Wong CS; Poon JK; Hill RP
    Radiother Oncol; 1993 Feb; 26(2):132-8. PubMed ID: 8465013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of sensory abnormalities and kinin B(1) receptor expression by N-acetyl-L-cysteine and ramipril in a rat model of insulin resistance.
    Ismael MA; Talbot S; Carbonneau CL; Beauséjour CM; Couture R
    Eur J Pharmacol; 2008 Jul; 589(1-3):66-72. PubMed ID: 18555989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal Cord T-Cell Infiltration in the Rat Spared Nerve Injury Model: A Time Course Study.
    Gattlen C; Clarke CB; Piller N; Kirschmann G; Pertin M; Decosterd I; Gosselin RD; Suter MR
    Int J Mol Sci; 2016 Mar; 17(3):352. PubMed ID: 27005622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.
    Li YQ; Wong CS
    Radiat Res; 2000 Sep; 154(3):268-76. PubMed ID: 10956432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demyelination Occurred as the Secondary Damage Following Diffuse Axonal Loss in a Rat Model of Radiation Myelopathy.
    Wei L; Zhou Y; Liu CJ; Zheng K; You H
    Neurochem Res; 2017 Apr; 42(4):953-962. PubMed ID: 27933549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays.
    Hopewell JW; Morris AD; Dixon-Brown A
    Br J Radiol; 1987 Nov; 60(719):1099-108. PubMed ID: 3690151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.