These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29904628)
1. Longitudinal Walking Analysis in Hemiparetic Patients Using Wearable Motion Sensors: Is There Convergence Between Body Sides? Derungs A; Schuster-Amft C; Amft O Front Bioeng Biotechnol; 2018; 6():57. PubMed ID: 29904628 [No Abstract] [Full Text] [Related]
2. Physical Activity Comparison Between Body Sides in Hemiparetic Patients Using Wearable Motion Sensors in Free-Living and Therapy: A Case Series. Derungs A; Schuster-Amft C; Amft O Front Bioeng Biotechnol; 2018; 6():136. PubMed ID: 30386777 [No Abstract] [Full Text] [Related]
3. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models. Seiter J; Derungs A; Schuster-Amft C; Amft O; Tröster G Methods Inf Med; 2015; 54(3):248-55. PubMed ID: 25658903 [TBL] [Abstract][Full Text] [Related]
4. Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. Arens P; Siviy C; Bae J; Choe DK; Karavas N; Baker T; Ellis TD; Awad LN; Walsh CJ Wearable Technol; 2021; 2():. PubMed ID: 34396094 [TBL] [Abstract][Full Text] [Related]
5. Body center of mass trajectory and mechanical energy using inertial sensors: a feasible stride? Pavei G; Salis F; Cereatti A; Bergamini E Gait Posture; 2020 Jul; 80():199-205. PubMed ID: 32526617 [TBL] [Abstract][Full Text] [Related]
6. Auto detection and segmentation of daily living activities during a Timed Up and Go task in people with Parkinson's disease using multiple inertial sensors. Nguyen H; Lebel K; Boissy P; Bogard S; Goubault E; Duval C J Neuroeng Rehabil; 2017 Apr; 14(1):26. PubMed ID: 28388939 [TBL] [Abstract][Full Text] [Related]
7. Estimating Walking Speed in the Wild. Baroudi L; Newman MW; Jackson EA; Barton K; Shorter KA; Cain SM Front Sports Act Living; 2020; 2():583848. PubMed ID: 33345151 [TBL] [Abstract][Full Text] [Related]
8. Wearable Sensors Improve Prediction of Post-Stroke Walking Function Following Inpatient Rehabilitation. O'Brien MK; Shin SY; Khazanchi R; Fanton M; Lieber RL; Ghaffari R; Rogers JA; Jayaraman A IEEE J Transl Eng Health Med; 2022; 10():2100711. PubMed ID: 36304845 [TBL] [Abstract][Full Text] [Related]
9. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Buesing C; Fisch G; O'Donnell M; Shahidi I; Thomas L; Mummidisetty CK; Williams KJ; Takahashi H; Rymer WZ; Jayaraman A J Neuroeng Rehabil; 2015 Aug; 12():69. PubMed ID: 26289955 [TBL] [Abstract][Full Text] [Related]
10. Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs). Ayachi FS; Nguyen HP; Lavigne-Pelletier C; Goubault E; Boissy P; Duval C Physiol Meas; 2016 Mar; 37(3):442-61. PubMed ID: 26914432 [TBL] [Abstract][Full Text] [Related]
11. Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis. Derungs A; Amft O Sci Rep; 2020 Jul; 10(1):11450. PubMed ID: 32651412 [TBL] [Abstract][Full Text] [Related]
13. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929 [TBL] [Abstract][Full Text] [Related]
14. Free-living and laboratory gait characteristics in patients with multiple sclerosis. Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279 [TBL] [Abstract][Full Text] [Related]
15. Investigating Activity Recognition for Hemiparetic Stroke Patients Using Wearable Sensors: A Deep Learning Approach with Data Augmentation. Oh Y; Choi SA; Shin Y; Jeong Y; Lim J; Kim S Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203072 [TBL] [Abstract][Full Text] [Related]
16. Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis. De Ridder R; Lebleu J; Willems T; De Blaiser C; Detrembleur C; Roosen P J Sport Rehabil; 2019 Aug; 28(6):. PubMed ID: 30747572 [TBL] [Abstract][Full Text] [Related]
17. Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People With Parkinson's Disease. Nguyen H; Lebel K; Bogard S; Goubault E; Boissy P; Duval C IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):197-204. PubMed ID: 28858808 [TBL] [Abstract][Full Text] [Related]
18. Automatic characterization of stride parameters in canines with a single wearable inertial sensor. Jenkins GJ; Hakim CH; Yang NN; Yao G; Duan D PLoS One; 2018; 13(6):e0198893. PubMed ID: 29902280 [TBL] [Abstract][Full Text] [Related]
19. Kinematics based sensory fusion for wearable motion assessment in human walking. Slajpah S; Kamnik R; Munih M Comput Methods Programs Biomed; 2014 Sep; 116(2):131-44. PubMed ID: 24374292 [TBL] [Abstract][Full Text] [Related]
20. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]