These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29904628)
21. Systematic reviews of the effectiveness of day care for people with severe mental disorders: (1) acute day hospital versus admission; (2) vocational rehabilitation; (3) day hospital versus outpatient care. Marshall M; Crowther R; Almaraz-Serrano A; Creed F; Sledge W; Kluiter H; Roberts C; Hill E; Wiersma D; Bond GR; Huxley P; Tyrer P Health Technol Assess; 2001; 5(21):1-75. PubMed ID: 11532238 [TBL] [Abstract][Full Text] [Related]
22. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Schwenk M; Mohler J; Wendel C; D'Huyvetter K; Fain M; Taylor-Piliae R; Najafi B Gerontology; 2015; 61(3):258-67. PubMed ID: 25547185 [TBL] [Abstract][Full Text] [Related]
23. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods. Mannini A; Sabatini AM Med Eng Phys; 2014 Oct; 36(10):1312-21. PubMed ID: 25199588 [TBL] [Abstract][Full Text] [Related]
24. Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors. Nguyen HP; Ayachi F; Lavigne-Pelletier C; Blamoutier M; Rahimi F; Boissy P; Jog M; Duval C J Neuroeng Rehabil; 2015 Apr; 12():36. PubMed ID: 25885438 [TBL] [Abstract][Full Text] [Related]
25. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking. Ojeda LV; Rebula JR; Kuo AD; Adamczyk PG Med Eng Phys; 2015 Oct; 37(10):929-36. PubMed ID: 26250066 [TBL] [Abstract][Full Text] [Related]
26. Comparing Clothing-Mounted Sensors with Wearable Sensors for Movement Analysis and Activity Classification. Jayasinghe U; Harwin WS; Hwang F Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877780 [TBL] [Abstract][Full Text] [Related]
27. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698 [TBL] [Abstract][Full Text] [Related]
28. Wearable Sensor-Based Daily Life Walking Assessment of Gait for Distinguishing Individuals With Amnestic Mild Cognitive Impairment. Xie H; Wang Y; Tao S; Huang S; Zhang C; Lv Z Front Aging Neurosci; 2019; 11():285. PubMed ID: 31695605 [No Abstract] [Full Text] [Related]
29. Interactive wearable systems for upper body rehabilitation: a systematic review. Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228 [TBL] [Abstract][Full Text] [Related]
30. Using Wearable Sensors and Machine Learning Models to Separate Functional Upper Extremity Use From Walking-Associated Arm Movements. McLeod A; Bochniewicz EM; Lum PS; Holley RJ; Emmer G; Dromerick AW Arch Phys Med Rehabil; 2016 Feb; 97(2):224-31. PubMed ID: 26435302 [TBL] [Abstract][Full Text] [Related]
31. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features. Altini M; Penders J; Vullers R; Amft O Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124 [TBL] [Abstract][Full Text] [Related]
32. Objective evaluation of cervical spine mobility after surgery during free-living activity. Duc C; Salvia P; Lubansu A; Feipel V; Aminian K Clin Biomech (Bristol); 2013 Apr; 28(4):364-9. PubMed ID: 23578604 [TBL] [Abstract][Full Text] [Related]
33. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking. Fasel B; Duc C; Dadashi F; Bardyn F; Savary M; Farine PA; Aminian K Med Biol Eng Comput; 2017 Oct; 55(10):1773-1785. PubMed ID: 28197810 [TBL] [Abstract][Full Text] [Related]
34. Evaluating wearable multimodal sensor insoles for motion-pattern measurements in stroke rehabilitation - A pilot study. David V; Forjan M; Martinek J; Kotzian S; Jagos H; Rafolt D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1543-1548. PubMed ID: 28814039 [TBL] [Abstract][Full Text] [Related]
35. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance. Peruzzi A; Della Croce U; Cereatti A J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860 [TBL] [Abstract][Full Text] [Related]
36. Activity classification in persons with stroke based on frequency features. Laudanski A; Brouwer B; Li Q Med Eng Phys; 2015 Feb; 37(2):180-6. PubMed ID: 25559935 [TBL] [Abstract][Full Text] [Related]
37. Online phase detection using wearable sensors for walking with a robotic prosthesis. Goršič M; Kamnik R; Ambrožič L; Vitiello N; Lefeber D; Pasquini G; Munih M Sensors (Basel); 2014 Feb; 14(2):2776-94. PubMed ID: 24521944 [TBL] [Abstract][Full Text] [Related]
38. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders. Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668 [TBL] [Abstract][Full Text] [Related]
39. Models for temporal-spatial parameters in walking with cadence ratio as the independent variable. Fang J; Mu Z; Xu Z; Xie L; Yang GY; Zhang Q Med Biol Eng Comput; 2019 Apr; 57(4):877-886. PubMed ID: 30465322 [TBL] [Abstract][Full Text] [Related]