BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29904646)

  • 1. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.
    Carrieroa A; Pereirab AF; Wilson AJ; Castagno S; Javaheri B; Pitsillides AA; Marenzana M; Shefelbine SJ
    Bone Rep; 2018 Jun; 8():72-80. PubMed ID: 29904646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting cortical bone adaptation to axial loading in the mouse tibia.
    Pereira AF; Javaheri B; Pitsillides AA; Shefelbine SJ
    J R Soc Interface; 2015 Sep; 12(110):0590. PubMed ID: 26311315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation, validation, and prediction of loading-induced mineral apposition rates at endocortical and periosteal bone surfaces based on fluid velocity and pore pressure.
    Singh S; Singh SJ; Prasad J
    Bone Rep; 2023 Dec; 19():101729. PubMed ID: 38089647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.
    Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP
    Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.
    Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM
    PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical Thickness Adaptive Response to Mechanical Loading Depends on Periosteal Position and Varies Linearly With Loading Magnitude.
    Miller CJ; Trichilo S; Pickering E; Martelli S; Delisser P; Meakin LB; Pivonka P
    Front Bioeng Biotechnol; 2021; 9():671606. PubMed ID: 34222215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia.
    Sztefek P; Vanleene M; Olsson R; Collinson R; Pitsillides AA; Shefelbine S
    J Biomech; 2010 Mar; 43(4):599-605. PubMed ID: 20005517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial relationships between bone formation and mechanical stress within cancellous bone.
    Cresswell EN; Goff MG; Nguyen TM; Lee WX; Hernandez CJ
    J Biomech; 2016 Jan; 49(2):222-8. PubMed ID: 26706721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration.
    Sun D; Brodt MD; Zannit HM; Holguin N; Silva MJ
    J Orthop Res; 2018 Feb; 36(2):682-691. PubMed ID: 28888055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading.
    Piet J; Hu D; Baron R; Shefelbine SJ
    Bone; 2019 Mar; 120():487-494. PubMed ID: 30586636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Sci Rep; 2016 Mar; 6():23480. PubMed ID: 27004741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study.
    Razi H; Birkhold AI; Zaslansky P; Weinkamer R; Duda GN; Willie BM; Checa S
    Acta Biomater; 2015 Feb; 13():301-10. PubMed ID: 25463494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical loading causes site-specific anabolic effects on bone following exposure to ionizing radiation.
    Shirazi-Fard Y; Alwood JS; Schreurs AS; Castillo AB; Globus RK
    Bone; 2015 Dec; 81():260-269. PubMed ID: 26191778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone response to in vivo mechanical loading in C3H/HeJ mice.
    Pedersen EA; Akhter MP; Cullen DM; Kimmel DB; Recker RR
    Calcif Tissue Int; 1999 Jul; 65(1):41-6. PubMed ID: 10369732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.