These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29905339)

  • 41. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer.
    Klare JP; Gordeliy VI; Labahn J; Büldt G; Steinhoff HJ; Engelhard M
    FEBS Lett; 2004 Apr; 564(3):219-24. PubMed ID: 15111099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMR structure of hypothetical protein TA0938 from Thermoplasma acidophilum.
    Monleón D; Yee A; Arrowsmith C; Celda B
    Proteins; 2007 Jun; 67(4):1185-8. PubMed ID: 17377985
    [No Abstract]   [Full Text] [Related]  

  • 43. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR.
    Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis.
    Wegener AA; Klare JP; Engelhard M; Steinhoff HJ
    EMBO J; 2001 Oct; 20(19):5312-9. PubMed ID: 11574462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aggregation behavior of fluorocarbon and hydrocarbon cationic surfactant mixtures: a study of 1H NMR and 19F NMR.
    Dong S; Xu G; Hoffmann H
    J Phys Chem B; 2008 Aug; 112(31):9371-8. PubMed ID: 18613719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early structural rearrangements in the photocycle of an integral membrane sensory receptor.
    Edman K; Royant A; Nollert P; Maxwell CA; Pebay-Peyroula E; Navarro J; Neutze R; Landau EM
    Structure; 2002 Apr; 10(4):473-82. PubMed ID: 11937052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18.
    Aisenbrey C; Kemayo-Koumkoua P; Salnikov ES; Glattard E; Bechinger B
    Biochemistry; 2019 Jun; 58(24):2782-2795. PubMed ID: 31120242
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMR structure, localization, and vesicle fusion of Chikungunya virus fusion peptide.
    Mohanram H; Nip A; Domadia PN; Bhunia A; Bhattacharjya S
    Biochemistry; 2012 Oct; 51(40):7863-72. PubMed ID: 22978677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topology and secondary structure of the N-terminal domain of diacylglycerol kinase.
    Oxenoid K; Sönnichsen FD; Sanders CR
    Biochemistry; 2002 Oct; 41(42):12876-82. PubMed ID: 12379131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complete 1H, 13C and 15N NMR assignments of MTH0776 from Methanobacterium thermoautotrophicum.
    Amegbey G; Chang Z; Stothard P; Yee A; Arrowsmith C; Wishart DS
    J Biomol NMR; 2004 Dec; 30(4):459-60. PubMed ID: 15630567
    [No Abstract]   [Full Text] [Related]  

  • 51. Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies.
    Anderluh G; Razpotnik A; Podlesek Z; Macek P; Separovic F; Norton RS
    J Mol Biol; 2005 Mar; 347(1):27-39. PubMed ID: 15733915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles.
    Tyssandier V; Lyan B; Borel P
    Biochim Biophys Acta; 2001 Oct; 1533(3):285-92. PubMed ID: 11731338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 1H, 13C and 19F NMR spectroscopy of polyfluorinated ureas. Correlations involving NMR chemical shifts and electronic substituent effects.
    Abad A; Agulló C; Cuñat AC; Vilanova C
    Magn Reson Chem; 2005 May; 43(5):389-97. PubMed ID: 15706610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations.
    Huber T; Rajamoorthi K; Kurze VF; Beyer K; Brown MF
    J Am Chem Soc; 2002 Jan; 124(2):298-309. PubMed ID: 11782182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection.
    Bader R; Bettio A; Beck-Sickinger AG; Zerbe O
    J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gramicidin A/short-chain phospholipid dispersions: chain length dependence of gramicidin conformation and lipid organization.
    Greathouse DV; Hinton JF; Kim KS; Koeppe RE
    Biochemistry; 1994 Apr; 33(14):4291-9. PubMed ID: 7512381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR as a tool to investigate the structure, dynamics and function of membrane proteins.
    Liang B; Tamm LK
    Nat Struct Mol Biol; 2016 Jun; 23(6):468-74. PubMed ID: 27273629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations.
    Bragin PE; Kuznetsov AS; Bocharova OV; Volynsky PE; Arseniev AS; Efremov RG; Mineev KS
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2486-2498. PubMed ID: 30279150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.