These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29905681)
1. Time domain diffuse correlation spectroscopy: modeling the effects of laser coherence length and instrument response function. Cheng X; Tamborini D; Carp SA; Shatrovoy O; Zimmerman B; Tyulmankov D; Siegel A; Blackwell M; Franceschini MA; Boas DA Opt Lett; 2018 Jun; 43(12):2756-2759. PubMed ID: 29905681 [TBL] [Abstract][Full Text] [Related]
2. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
3. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
7. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method. Wang Q; Pan M; Zang Z; Li DD J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935 [TBL] [Abstract][Full Text] [Related]
8. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. Moore CH; Sunar U; Lin W Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194613 [TBL] [Abstract][Full Text] [Related]
9. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. Colombo L; Pagliazzi M; Sekar SKV; Contini D; Mora AD; Spinelli L; Torricelli A; Durduran T; Pifferi A Neurophotonics; 2019 Jul; 6(3):035001. PubMed ID: 31312668 [TBL] [Abstract][Full Text] [Related]
10. Analytical models for time-domain diffuse correlation spectroscopy for multi-layer and heterogeneous turbid media. Li J; Qiu L; Poon CS; Sunar U Biomed Opt Express; 2017 Dec; 8(12):5518-5532. PubMed ID: 29296485 [TBL] [Abstract][Full Text] [Related]
11. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results. Parfentyeva V; Colombo L; Lanka P; Pagliazzi M; Brodu A; Noordzij N; Kolarczik M; Dalla Mora A; Re R; Contini D; Torricelli A; Durduran T; Pifferi A Sci Rep; 2023 Jul; 13(1):11982. PubMed ID: 37488188 [TBL] [Abstract][Full Text] [Related]
12. Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture. Li Z; Ge Q; Feng J; Jia K; Zhao J Biomed Opt Express; 2021 Jul; 12(7):4131-4146. PubMed ID: 34457404 [TBL] [Abstract][Full Text] [Related]
13. Time domain diffuse correlation spectroscopy with a high coherence pulsed source: Pagliazzi M; Sekar SKV; Colombo L; Martinenghi E; Minnema J; Erdmann R; Contini D; Mora AD; Torricelli A; Pifferi A; Durduran T Biomed Opt Express; 2017 Nov; 8(11):5311-5325. PubMed ID: 29188122 [TBL] [Abstract][Full Text] [Related]
14. Numerical approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation with continuous-wave and time-domain diffuse correlation spectroscopy. Helton M; Rajasekhar S; Zerafa S; Vishwanath K; Mycek MA Biomed Opt Express; 2023 Jan; 14(1):367-384. PubMed ID: 36698680 [TBL] [Abstract][Full Text] [Related]
15. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries. Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721 [TBL] [Abstract][Full Text] [Related]
16. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719 [No Abstract] [Full Text] [Related]
17. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow. Bartlett MF; Jordan SM; Hueber DM; Nelson MD J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054 [TBL] [Abstract][Full Text] [Related]
18. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS). Robinson MB; Carp SA; Peruch A; Boas DA; Franceschini MA; Sakadžić S Biomed Opt Express; 2020 Jun; 11(6):3071-3090. PubMed ID: 32637242 [TBL] [Abstract][Full Text] [Related]
19. Theoretical model of blood flow measurement by diffuse correlation spectroscopy. Sakadžic S; Boas DA; Carp S J Biomed Opt; 2017 Feb; 22(2):27006. PubMed ID: 28241276 [TBL] [Abstract][Full Text] [Related]