These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29905734)

  • 21. Two-dimensional imaging of OH laser-induced fluorescence in a flame.
    Dyer MJ; Crosley DR
    Opt Lett; 1982 Aug; 7(8):382-4. PubMed ID: 19714029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.
    Ma L; Wu Y; Xu W; Hammack SD; Lee T; Carter CD
    Appl Opt; 2016 Jul; 55(20):5310-5. PubMed ID: 27409304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physics-trained neural network for sparse-view volumetric laser absorption imaging of species and temperature in reacting flows.
    Wei C; Schwarm KK; Pineda DI; Mitchell Spearrin R
    Opt Express; 2021 Jul; 29(14):22553-22566. PubMed ID: 34266015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet.
    Halls BR; Thul DJ; Michaelis D; Roy S; Meyer TR; Gord JR
    Opt Express; 2016 May; 24(9):10040-9. PubMed ID: 27137614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-Line Laser-Induced Fluorescence Imaging of Vibrational Temperatures in a NO-Seeded Flame.
    Bessler WG; Hildenbrand F; Schulz C
    Appl Opt; 2001 Feb; 40(6):748-56. PubMed ID: 18357054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.
    Cho KY; Satija A; Pourpoint TL; Son SF; Lucht RP
    Appl Opt; 2014 Jan; 53(3):316-26. PubMed ID: 24514114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional imaging of molecular hydrogen in H(2)-air diffusion flames using two-photon laser-induced fluorescence.
    Lempert W; Diskin G; Kumar V; Glesk I; Miles R
    Opt Lett; 1991 May; 16(9):660-2. PubMed ID: 19774030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-shot thermometry and OH detection via femtosecond fully resonant electronically enhanced CARS (FREE-CARS).
    Wrzesinski PJ; Stauffer HU; Schmidt JB; Roy S; Gord JR
    Opt Lett; 2016 May; 41(9):2021-4. PubMed ID: 27128064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH(4)-air flame.
    Hirano A; Tsujishita M
    Appl Opt; 1994 Nov; 33(33):7777-80. PubMed ID: 20962989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All Fiber-Coupled OH Planar Laser-Induced-Fluorescence (OH-PLIF)-Based Two-Dimensional Thermometry.
    Hsu PS; Jiang N; Patnaik AK; Katta V; Roy S; Gord JR
    Appl Spectrosc; 2018 Apr; 72(4):604-610. PubMed ID: 29148279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a three-legged, high-speed, burst-mode laser system for simultaneous measurements of velocity and scalars in reacting flows.
    Roy S; Jiang N; Hsu PS; Yi T; Slipchenko MN; Felver JJ; Estevadeordal J; Gord JR
    Opt Lett; 2018 Jun; 43(11):2704-2707. PubMed ID: 29856372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging.
    Cai W; Li X; Ma L
    Appl Opt; 2013 Nov; 52(33):8106-16. PubMed ID: 24513765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative imaging of temperature and OH in turbulent diffusion flames by using a single laser source.
    Kelman JB; Masri AR
    Appl Opt; 1994 Jun; 33(18):3992-9. PubMed ID: 20935746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 4D spatiotemporal evolution of combustion intermediates in turbulent flames using burst-mode volumetric laser-induced fluorescence.
    Halls BR; Jiang N; Meyer TR; Roy S; Slipchenko MN; Gord JR
    Opt Lett; 2017 Jul; 42(14):2830-2833. PubMed ID: 28708180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Planar laser-induced fluorescence of OH in a chemically reacting boundary layer.
    Pfefferle LD; Griffin TA; Winter M
    Appl Opt; 1988 Aug; 27(15):3197-202. PubMed ID: 20531918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging.
    Kulatilaka WD; Stauffer HU; Gord JR; Roy S
    Opt Lett; 2011 Nov; 36(21):4182-4. PubMed ID: 22048358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Instantaneous temperature field measurements using planar laser-induced fluorescence.
    Seitzman JM; Kychakoff G; Hanson RK
    Opt Lett; 1985 Sep; 10(9):439-41. PubMed ID: 19724474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hydroxyl radical detection system using gas expansion and fast gating laser-induced fluorescence techniques.
    Chen H; Hu R; Xie P; Xing X; Ling L; Li Z; Wang F; Wang Y; Liu J; Liu W
    J Environ Sci (China); 2018 Mar; 65():190-200. PubMed ID: 29548391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative two-photon LIF imaging of carbon monoxide in combustion gases.
    Seitzman JM; Haumann J; Hanson RK
    Appl Opt; 1987 Jul; 26(14):2892-9. PubMed ID: 20489978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.