BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 29905858)

  • 1. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish knock-ins swim into the mainstream.
    Prykhozhij SV; Berman JN
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30366936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration.
    Schmid B; Haass C
    J Neurochem; 2013 Nov; 127(4):461-70. PubMed ID: 24117801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
    Prykhozhij SV; Rajan V; Berman JN
    Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote.
    Raveux A; Vandormael-Pournin S; Cohen-Tannoudji M
    Sci Rep; 2017 Feb; 7():42661. PubMed ID: 28209967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System.
    Armstrong GA; Liao M; You Z; Lissouba A; Chen BE; Drapeau P
    PLoS One; 2016; 11(3):e0150188. PubMed ID: 26930076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing in Zebrafish Using CRISPR-Cas9: Applications for Developmental Toxicology.
    Warner BK; Alder JK; Suli A
    Methods Mol Biol; 2019; 1965():235-250. PubMed ID: 31069679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing.
    Zhang Y; Zhang Z; Ge W
    J Biol Chem; 2018 Apr; 293(17):6611-6622. PubMed ID: 29500194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9.
    Niu Y; Zhao X; Zhou J; Li Y; Huang Y; Cai B; Liu Y; Ding Q; Zhou S; Zhao J; Zhou G; Ma B; Huang X; Wang X; Chen Y
    Reprod Fertil Dev; 2018 Jan; 30(2):307-312. PubMed ID: 28692815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.