BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29906119)

  • 1. How First Shell-Second Shell Interactions and Metal Substitution Modulate Protein Function.
    Mazmanian K; Dudev T; Lim C
    Inorg Chem; 2018 Nov; 57(22):14052-14061. PubMed ID: 29906119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral Cys2His2 site.
    Klemba M; Regan L
    Biochemistry; 1995 Aug; 34(31):10094-100. PubMed ID: 7632681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc to cadmium replacement in the prokaryotic zinc-finger domain.
    Malgieri G; Palmieri M; Esposito S; Maione V; Russo L; Baglivo I; de Paola I; Milardi D; Diana D; Zaccaro L; Pedone PV; Fattorusso R; Isernia C
    Metallomics; 2014 Jan; 6(1):96-104. PubMed ID: 24287553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario.
    Grazioso R; García-Viñuales S; Russo L; D'Abrosca G; Esposito S; Zaccaro L; Iacovino R; Milardi D; Fattorusso R; Malgieri G; Isernia C
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity.
    Lachenmann MJ; Ladbury JE; Dong J; Huang K; Carey P; Weiss MA
    Biochemistry; 2004 Nov; 43(44):13910-25. PubMed ID: 15518539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors governing the protonation state of Zn-bound histidine in proteins: a DFT/CDM study.
    Lin YL; Lim C
    J Am Chem Soc; 2004 Mar; 126(8):2602-12. PubMed ID: 14982470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins.
    Wernimont AK; Huffman DL; Lamb AL; O'Halloran TV; Rosenzweig AC
    Nat Struct Biol; 2000 Sep; 7(9):766-71. PubMed ID: 10966647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV; Lim C
    J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors controlling the reactivity of zinc finger cores.
    Lee YM; Lim C
    J Am Chem Soc; 2011 Jun; 133(22):8691-703. PubMed ID: 21574548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zn protein simulations including charge transfer and local polarization effects.
    Sakharov DV; Lim C
    J Am Chem Soc; 2005 Apr; 127(13):4921-9. PubMed ID: 15796557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium in metallothioneins.
    Freisinger E; Vašák M
    Met Ions Life Sci; 2013; 11():339-71. PubMed ID: 23430778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center.
    Goodfellow BJ; Rusnak F; Moura I; Domke T; Moura JJ
    Protein Sci; 1998 Apr; 7(4):928-37. PubMed ID: 9568899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.