These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29906170)

  • 1. Is Self-Interacting Dark Matter Undergoing Dark Fusion?
    McDermott SD
    Phys Rev Lett; 2018 Jun; 120(22):221806. PubMed ID: 29906170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters.
    Kaplinghat M; Tulin S; Yu HB
    Phys Rev Lett; 2016 Jan; 116(4):041302. PubMed ID: 26871320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A galaxy lacking dark matter.
    van Dokkum P; Danieli S; Cohen Y; Merritt A; Romanowsky AJ; Abraham R; Brodie J; Conroy C; Lokhorst D; Mowla L; O'Sullivan E; Zhang J
    Nature; 2018 Mar; 555(7698):629-632. PubMed ID: 29595770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.
    Genzel R; Schreiber NM; Übler H; Lang P; Naab T; Bender R; Tacconi LJ; Wisnioski E; Wuyts S; Alexander T; Beifiori A; Belli S; Brammer G; Burkert A; Carollo CM; Chan J; Davies R; Fossati M; Galametz A; Genel S; Gerhard O; Lutz D; Mendel JT; Momcheva I; Nelson EJ; Renzini A; Saglia R; Sternberg A; Tacchella S; Tadaki K; Wilman D
    Nature; 2017 Mar; 543(7645):397-401. PubMed ID: 28300118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies.
    Robles VH; Bullock JS; Elbert OD; Fitts A; González-Samaniego A; Boylan-Kolchin M; Hopkins PF; Faucher-Giguère CA; Kereš D; Hayward CC
    Mon Not R Astron Soc; 2017 Dec; 472(3):2945-2954. PubMed ID: 30595610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold dark matter: Controversies on small scales.
    Weinberg DH; Bullock JS; Governato F; Kuzio de Naray R; Peter AH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12249-55. PubMed ID: 25646464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity Dependence from Resonant Self-Interacting Dark Matter.
    Chu X; Garcia-Cely C; Murayama H
    Phys Rev Lett; 2019 Feb; 122(7):071103. PubMed ID: 30848653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cores in dwarf galaxies from dark matter with a Yukawa potential.
    Loeb A; Weiner N
    Phys Rev Lett; 2011 Apr; 106(17):171302. PubMed ID: 21635025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Structure and Evolution of Weakly Self-interacting Cold Dark Matter Halos.
    Burkert A
    Astrophys J; 2000 May; 534(2):L143-L146. PubMed ID: 10813668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal constant for dark matter-baryon interplay.
    Chan MH
    Sci Rep; 2019 Mar; 9(1):3570. PubMed ID: 30837521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-Ray Lines from Dark Matter Annihilation at the keV Scale.
    Brdar V; Kopp J; Liu J; Wang XP
    Phys Rev Lett; 2018 Feb; 120(6):061301. PubMed ID: 29481266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Search for Dark Matter Annihilation in Galaxy Groups.
    Lisanti M; Mishra-Sharma S; Rodd NL; Safdi BR
    Phys Rev Lett; 2018 Mar; 120(10):101101. PubMed ID: 29570342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.
    Abramowski A; Aharonian F; Ait Benkhali F; Akhperjanian AG; Angüner EO; Backes M; Balenderan S; Balzer A; Barnacka A; Becherini Y; Becker Tjus J; Berge D; Bernhard S; Bernlöhr K; Birsin E; Biteau J; Böttcher M; Boisson C; Bolmont J; Bordas P; Bregeon J; Brun F; Brun P; Bryan M; Bulik T; Carrigan S; Casanova S; Chadwick PM; Chakraborty N; Chalme-Calvet R; Chaves RC; Chrétien M; Colafrancesco S; Cologna G; Conrad J; Couturier C; Cui Y; Davids ID; Degrange B; Deil C; deWilt P; Djannati-Ataï A; Domainko W; Donath A; Drury LO; Dubus G; Dutson K; Dyks J; Dyrda M; Edwards T; Egberts K; Eger P; Espigat P; Farnier C; Fegan S; Feinstein F; Fernandes MV; Fernandez D; Fiasson A; Fontaine G; Förster A; Füßling M; Gabici S; Gajdus M; Gallant YA; Garrigoux T; Giavitto G; Giebels B; Glicenstein JF; Gottschall D; Grondin MH; Grudzińska M; Hadasch D; Häffner S; Hahn J; Harris J; Heinzelmann G; Henri G; Hermann G; Hervet O; Hillert A; Hinton JA; Hofmann W; Hofverberg P; Holler M; Horns D; Ivascenko A; Jacholkowska A; Jahn C; Jamrozy M; Janiak M; Jankowsky F; Jung-Richardt I; Kastendieck MA; Katarzyński K; Katz U; Kaufmann S; Khélifi B; Kieffer M; Klepser S; Klochkov D; Kluźniak W; Kolitzus D; Komin N; Kosack K; Krakau S; Krayzel F; Krüger PP; Laffon H; Lamanna G; Lefaucheur J; Lefranc V; Lemière A; Lemoine-Goumard M; Lenain JP; Lohse T; Lopatin A; Lu CC; Marandon V; Marcowith A; Marx R; Maurin G; Maxted N; Mayer M; McComb TJ; Méhault J; Meintjes PJ; Menzler U; Meyer M; Mitchell AM; Moderski R; Mohamed M; Morå K; Moulin E; Murach T; de Naurois M; Niemiec J; Nolan SJ; Oakes L; Odaka H; Ohm S; Opitz B; Ostrowski M; Oya I; Panter M; Parsons RD; Paz Arribas M; Pekeur NW; Pelletier G; Petrucci PO; Peyaud B; Pita S; Poon H; Pühlhofer G; Punch M; Quirrenbach A; Raab S; Reichardt I; Reimer A; Reimer O; Renaud M; de Los Reyes R; Rieger F; Romoli C; Rosier-Lees S; Rowell G; Rudak B; Rulten CB; Sahakian V; Salek D; Sanchez DA; Santangelo A; Schlickeiser R; Schüssler F; Schulz A; Schwanke U; Schwarzburg S; Schwemmer S; Sol H; Spanier F; Spengler G; Spies F; Stawarz Ł; Steenkamp R; Stegmann C; Stinzing F; Stycz K; Sushch I; Tavernet JP; Tavernier T; Taylor AM; Terrier R; Tluczykont M; Trichard C; Valerius K; van Eldik C; van Soelen B; Vasileiadis G; Veh J; Venter C; Viana A; Vincent P; Vink J; Völk HJ; Volpe F; Vorster M; Vuillaume T; Wagner SJ; Wagner P; Wagner RM; Ward M; Weidinger M; Weitzel Q; White R; Wierzcholska A; Willmann P; Wörnlein A; Wouters D; Yang R; Zabalza V; Zaborov D; Zacharias M; Zdziarski AA; Zech A; Zechlin HS;
    Phys Rev Lett; 2015 Feb; 114(8):081301. PubMed ID: 25768750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collisional Dark Matter and the Structure of Dark Halos.
    Yoshida N; Springel V; White SD; Tormen G
    Astrophys J; 2000 Jun; 535(2):L103-L106. PubMed ID: 10835309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galactic center excess in γ rays from annihilation of self-interacting dark matter.
    Kaplinghat M; Linden T; Yu HB
    Phys Rev Lett; 2015 May; 114(21):211303. PubMed ID: 26066426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal structure of dark matter haloes over a mass range of 20 orders of magnitude.
    Wang J; Bose S; Frenk CS; Gao L; Jenkins A; Springel V; White SDM
    Nature; 2020 Sep; 585(7823):39-42. PubMed ID: 32879500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?
    van den Aarssen LG; Bringmann T; Pfrommer C
    Phys Rev Lett; 2012 Dec; 109(23):231301. PubMed ID: 23368181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.
    Herzog-Arbeitman J; Lisanti M; Madau P; Necib L
    Phys Rev Lett; 2018 Jan; 120(4):041102. PubMed ID: 29437457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant dark forces and small-scale structure.
    Tulin S; Yu HB; Zurek KM
    Phys Rev Lett; 2013 Mar; 110(11):111301. PubMed ID: 25166522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.
    Kamada A; Kaplinghat M; Pace AB; Yu HB
    Phys Rev Lett; 2017 Sep; 119(11):111102. PubMed ID: 28949220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.