BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 29906425)

  • 1. Diastolic Hypotension May Attenuate Benefits from Intensive Systolic Targets: Secondary Analysis of a Randomized Controlled Trial.
    Lee TC; Cavalcanti RB; McDonald EG; Pilote L; Brophy JM
    Am J Med; 2018 Oct; 131(10):1228-1233.e1. PubMed ID: 29906425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Risk of Harm Associated With Intensive Blood Pressure Management Among Patients With Hypertension Who Smoke: A Secondary Analysis of the Systolic Blood Pressure Intervention Trial.
    Scarpa J; Bruzelius E; Doupe P; Le M; Faghmous J; Baum A
    JAMA Netw Open; 2019 Mar; 2(3):e190005. PubMed ID: 30848803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of blood pressure-lowering treatment by the levels of baseline Framingham risk score: A post hoc analysis of the Systolic Blood Pressure Intervention Trial (SPRINT).
    Zhang L; Sun X; Liao L; Zhang S; Zhou H; Zhong X; Zhuang X; Liao X
    J Clin Hypertens (Greenwich); 2019 Dec; 21(12):1813-1820. PubMed ID: 31670874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Optimal Diastolic Blood Pressure Range Among Adults With Treated Systolic Blood Pressure Less Than 130 mm Hg.
    Li J; Somers VK; Gao X; Chen Z; Ju J; Lin Q; Mohamed EA; Karim S; Xu H; Zhang L
    JAMA Netw Open; 2021 Feb; 4(2):e2037554. PubMed ID: 33595663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of baseline systolic blood pressure on the relationship between intensive blood pressure control and cardiovascular outcomes in the Systolic Blood Pressure Intervention Trial (SPRINT).
    Sun X; Guo Y; Nie Z; Cheng J; Zhou H; Zhong X; Zhang S; Du Z; Zhuang X; Liao X
    Clin Res Cardiol; 2019 Mar; 108(3):273-281. PubMed ID: 30167807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensive vs Standard Blood Pressure Control and Cardiovascular Disease Outcomes in Adults Aged ≥75 Years: A Randomized Clinical Trial.
    Williamson JD; Supiano MA; Applegate WB; Berlowitz DR; Campbell RC; Chertow GM; Fine LJ; Haley WE; Hawfield AT; Ix JH; Kitzman DW; Kostis JB; Krousel-Wood MA; Launer LJ; Oparil S; Rodriguez CJ; Roumie CL; Shorr RI; Sink KM; Wadley VG; Whelton PK; Whittle J; Woolard NF; Wright JT; Pajewski NM;
    JAMA; 2016 Jun; 315(24):2673-82. PubMed ID: 27195814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Lowering Diastolic Pressure in Patients With and Without Cardiovascular Disease: Analysis of the SPRINT (Systolic Blood Pressure Intervention Trial).
    Khan NA; Rabkin SW; Zhao Y; McAlister FA; Park JE; Guan M; Chan S; Humphries KH
    Hypertension; 2018 May; 71(5):840-847. PubMed ID: 29581214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefit and harm of intensive blood pressure treatment: Derivation and validation of risk models using data from the SPRINT and ACCORD trials.
    Basu S; Sussman JB; Rigdon J; Steimle L; Denton BT; Hayward RA
    PLoS Med; 2017 Oct; 14(10):e1002410. PubMed ID: 29040268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The SPRINT Research. A Randomized Trial of Intensive versus Standard Blood-Pressure Control].
    Widimský J
    Vnitr Lek; 2016 Jan; 62(1):44-7. PubMed ID: 26967236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Intensive Blood Pressure Lowering on Left Ventricular Hypertrophy in Patients With Hypertension: SPRINT (Systolic Blood Pressure Intervention Trial).
    Soliman EZ; Ambrosius WT; Cushman WC; Zhang ZM; Bates JT; Neyra JA; Carson TY; Tamariz L; Ghazi L; Cho ME; Shapiro BP; He J; Fine LJ; Lewis CE;
    Circulation; 2017 Aug; 136(5):440-450. PubMed ID: 28512184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Baseline Diastolic Blood Pressure on Effects of Intensive Compared With Standard Blood Pressure Control.
    Beddhu S; Chertow GM; Cheung AK; Cushman WC; Rahman M; Greene T; Wei G; Campbell RC; Conroy M; Freedman BI; Haley W; Horwitz E; Kitzman D; Lash J; Papademetriou V; Pisoni R; Riessen E; Rosendorff C; Watnick SG; Whittle J; Whelton PK;
    Circulation; 2018 Jan; 137(2):134-143. PubMed ID: 29021322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthostatic Hypotension, Cardiovascular Outcomes, and Adverse Events: Results From SPRINT.
    Juraschek SP; Taylor AA; Wright JT; Evans GW; Miller ER; Plante TB; Cushman WC; Gure TR; Haley WE; Moinuddin I; Nord J; Oparil S; Pedley C; Roumie CL; Whittle J; Wiggers A; Finucane C; Anne Kenny R; Appel LJ; Townsend RR;
    Hypertension; 2020 Mar; 75(3):660-667. PubMed ID: 31983312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association Between Baseline Diastolic Blood Pressure and the Efficacy of Intensive vs Standard Blood Pressure-Lowering Therapy.
    Foy AJ; Filippone EJ; Schaefer E; Nudy M; Ruzieh M; Dyer AM; Chinchilli VM; Naccarelli GV
    JAMA Netw Open; 2021 Oct; 4(10):e2128980. PubMed ID: 34668944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Deaths Averted and Serious Adverse Events Incurred From Adoption of the SPRINT (Systolic Blood Pressure Intervention Trial) Intensive Blood Pressure Regimen in the United States: Projections From NHANES (National Health and Nutrition Examination Survey).
    Bress AP; Kramer H; Khatib R; Beddhu S; Cheung AK; Hess R; Bansal VK; Cao G; Yee J; Moran AE; Durazo-Arvizu R; Muntner P; Cooper RS
    Circulation; 2017 Apr; 135(17):1617-1628. PubMed ID: 28193605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart failure and the discrepancy between trials of intensive blood pressure management: an analysis of individual patient data.
    Aggarwal R; Mirzan H; Chiu N; Steinkamp J
    Clin Res Cardiol; 2018 Jul; 107(7):565-569. PubMed ID: 29480390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of intensive blood pressure lowering on cardiovascular outcomes based on cardiovascular risk: A secondary analysis of the SPRINT trial.
    Attar A; Sayadi M; Jannati M
    Eur J Prev Cardiol; 2019 Feb; 26(3):238-245. PubMed ID: 30256671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Estimated Pulse Wave Velocity With Survival: A Secondary Analysis of SPRINT.
    Vlachopoulos C; Terentes-Printzios D; Laurent S; Nilsson PM; Protogerou AD; Aznaouridis K; Xaplanteris P; Koutagiar I; Tomiyama H; Yamashina A; Sfikakis PP; Tousoulis D
    JAMA Netw Open; 2019 Oct; 2(10):e1912831. PubMed ID: 31596491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Final Report of a Trial of Intensive versus Standard Blood-Pressure Control.
    ; Lewis CE; Fine LJ; Beddhu S; Cheung AK; Cushman WC; Cutler JA; Evans GW; Johnson KC; Kitzman DW; Oparil S; Rahman M; Reboussin DM; Rocco MV; Sink KM; Snyder JK; Whelton PK; Williamson JD; Wright JT; Ambrosius WT
    N Engl J Med; 2021 May; 384(20):1921-1930. PubMed ID: 34010531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthostatic Hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) Blood Pressure Trial: Prevalence, Incidence, and Prognostic Significance.
    Fleg JL; Evans GW; Margolis KL; Barzilay J; Basile JN; Bigger JT; Cutler JA; Grimm R; Pedley C; Peterson K; Pop-Busui R; Sperl-Hillen J; Cushman WC
    Hypertension; 2016 Oct; 68(4):888-95. PubMed ID: 27504006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual and Joint Effects of Pulse Pressure and Blood Pressure Treatment Intensity on Serious Adverse Events in the SPRINT Trial.
    Krishnaswami A; Kim DH; McCulloch CE; Forman DE; Maurer MS; Alexander KP; Rich MW
    Am J Med; 2018 Oct; 131(10):1220-1227.e1. PubMed ID: 29940151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.