These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29906504)
1. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. McCloskey D; Xu S; Sandberg TE; Brunk E; Hefner Y; Szubin R; Feist AM; Palsson BO Metab Eng; 2018 Jul; 48():233-242. PubMed ID: 29906504 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in Escherichia coli. Carmona SB; Moreno F; Bolívar F; Gosset G; Escalante A J Mol Microbiol Biotechnol; 2015; 25(2-3):195-208. PubMed ID: 26159079 [TBL] [Abstract][Full Text] [Related]
3. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Meza E; Becker J; Bolivar F; Gosset G; Wittmann C Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998 [TBL] [Abstract][Full Text] [Related]
4. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related]
5. The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. De Reuse H; Danchin A J Bacteriol; 1988 Sep; 170(9):3827-37. PubMed ID: 2457575 [TBL] [Abstract][Full Text] [Related]
6. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. Liu L; Chen S; Wu J J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: evidence for the existence of a single transcriptional unit. De Reuse H; Huttner E; Danchin A Gene; 1984 Dec; 32(1-2):31-40. PubMed ID: 6099314 [TBL] [Abstract][Full Text] [Related]
8. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. Flores N; Flores S; Escalante A; de Anda R; Leal L; Malpica R; Georgellis D; Gosset G; Bolívar F Metab Eng; 2005 Mar; 7(2):70-87. PubMed ID: 15781417 [TBL] [Abstract][Full Text] [Related]
9. Pathway engineering for the production of aromatic compounds in Escherichia coli. Flores N; Xiao J; Berry A; Bolivar F; Valle F Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954 [TBL] [Abstract][Full Text] [Related]
10. [Effect of PTS modifications on L-tryptophan production in Escherichia coli]. Wu T; Zhao J; Mao X Sheng Wu Gong Cheng Xue Bao; 2017 Nov; 33(11):1877-1882. PubMed ID: 29202524 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. De Reuse H; Roy A; Danchin A Gene; 1985; 35(1-2):199-207. PubMed ID: 2411636 [TBL] [Abstract][Full Text] [Related]
13. Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system. Aguilar C; Escalante A; Flores N; de Anda R; Riveros-McKay F; Gosset G; Morett E; Bolívar F BMC Genomics; 2012 Aug; 13():385. PubMed ID: 22884033 [TBL] [Abstract][Full Text] [Related]
14. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Alva A; Sabido-Ramos A; Escalante A; Bolívar F Appl Microbiol Biotechnol; 2020 Feb; 104(4):1463-1479. PubMed ID: 31900563 [TBL] [Abstract][Full Text] [Related]
15. Positive regulation of the pts operon of Escherichia coli: genetic evidence for a signal transduction mechanism. De Reuse H; Danchin A J Bacteriol; 1991 Jan; 173(2):727-33. PubMed ID: 1898933 [TBL] [Abstract][Full Text] [Related]
16. Negative regulation of the pts operon by Mlc: mechanism underlying glucose induction in Escherichia coli. Tanaka Y; Kimata K; Inada T; Tagami H; Aiba H Genes Cells; 1999 Jul; 4(7):391-9. PubMed ID: 10469172 [TBL] [Abstract][Full Text] [Related]
17. Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Chen R; Hatzimanikatis V; Yap WM; Postma PW; Bailey JE Biotechnol Prog; 1997; 13(6):768-75. PubMed ID: 9413135 [TBL] [Abstract][Full Text] [Related]
18. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene. Gonzy-Tréboul G; Steinmetz M J Bacteriol; 1987 May; 169(5):2287-90. PubMed ID: 3106335 [TBL] [Abstract][Full Text] [Related]
19. Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Balderas-Hernández VE; Hernández-Montalvo V; Bolívar F; Gosset G; Martínez A Appl Biochem Biotechnol; 2011 Feb; 163(4):485-96. PubMed ID: 20740380 [TBL] [Abstract][Full Text] [Related]
20. [Transformation of phosphotransferase system in Escherichia coli]. Xiao M; Zhang L; Liu S; Shi G Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1561-72. PubMed ID: 25726581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]