These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29906504)
21. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718 [TBL] [Abstract][Full Text] [Related]
22. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Escalante A; Salinas Cervantes A; Gosset G; Bolívar F Appl Microbiol Biotechnol; 2012 Jun; 94(6):1483-94. PubMed ID: 22573269 [TBL] [Abstract][Full Text] [Related]
23. [Mapping of mutations within the genes coding for enzyme I and Hpr proteins of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K-12. I. Mapping of the mutations within the ptsI gene]. Rusina OIu; Il'ina TS; Gershanovich VN Genetika; 1981; 17(10):1771-83. PubMed ID: 6458531 [TBL] [Abstract][Full Text] [Related]
24. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS Xu J; Zhang J; Liu D; Zhang W Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589 [TBL] [Abstract][Full Text] [Related]
25. The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Kotrba P; Inui M; Yukawa H Biochem Biophys Res Commun; 2001 Dec; 289(5):1307-13. PubMed ID: 11741338 [TBL] [Abstract][Full Text] [Related]
26. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. Aboulwafa M; Zhang Z; Saier MH PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341 [TBL] [Abstract][Full Text] [Related]
27. Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Báez JL; Bolívar F; Gosset G Biotechnol Bioeng; 2001 Jun; 73(6):530-5. PubMed ID: 11344458 [TBL] [Abstract][Full Text] [Related]
28. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Crigler J; Bannerman-Akwei L; Cole AE; Eiteman MA; Altman E Microbiology (Reading); 2018 Feb; 164(2):163-172. PubMed ID: 29393018 [TBL] [Abstract][Full Text] [Related]
29. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Liang Q; Zhang F; Li Y; Zhang X; Li J; Yang P; Qi Q Sci Rep; 2015 Aug; 5():13200. PubMed ID: 26285685 [TBL] [Abstract][Full Text] [Related]
30. Cloning and expression of the Listeria monocytogenes scott A ptsH and ptsI genes, coding for HPr and enzyme I, respectively, of the phosphotransferase system. Christensen DP; Benson AK; Hutkins RW Appl Environ Microbiol; 1998 Sep; 64(9):3147-52. PubMed ID: 9726852 [TBL] [Abstract][Full Text] [Related]
31. Overproduction and rapid purification of the phosphoenolpyruvate:sugar phosphotransferase system proteins enzyme I, HPr, and Protein IIIGlc of Escherichia coli. Reddy P; Fredd-Kuldell N; Liberman E; Peterkofsky A Protein Expr Purif; 1991; 2(2-3):179-87. PubMed ID: 1821787 [TBL] [Abstract][Full Text] [Related]
32. Location and direction of transcription of the ptsH and ptsI genes on the Escherichia coli K12 genome. Britton P; Lee LG; Murfitt D; Boronat A; Jones-Mortimer MC; Kornberg HL J Gen Microbiol; 1984 Apr; 130(4):861-8. PubMed ID: 6330287 [TBL] [Abstract][Full Text] [Related]
33. [Improvements of shikimic acid production in Escherichia coli with ideal metabolic modification in biosynthetic pathway--a review]. Xiao M; Zhang L; Shi G Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):5-13. PubMed ID: 24783849 [TBL] [Abstract][Full Text] [Related]
34. Effect of ptsI and ptsH mutations on initiation of transcription of the Escherichia coli lactose operon. Glesyna ML; Bolshakova TN; Gershanovitch VN Mol Gen Genet; 1983; 190(3):417-20. PubMed ID: 6308397 [TBL] [Abstract][Full Text] [Related]
35. Phosphotransferase system of Streptococcus salivarius: characterization of the ptsH gene and its product. Gagnon G; Vadeboncoeur C; Frenette M Gene; 1993 Dec; 136(1-2):27-34. PubMed ID: 8294015 [TBL] [Abstract][Full Text] [Related]
36. Positive regulation of the expression of the Escherichia coli pts operon. Identification of the regulatory regions. De Reuse H; Kolb A; Danchin A J Mol Biol; 1992 Aug; 226(3):623-35. PubMed ID: 1324322 [TBL] [Abstract][Full Text] [Related]
37. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis. Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026 [TBL] [Abstract][Full Text] [Related]
38. New insights into the role of sigma factor RpoS as revealed in escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. Flores N; Escalante A; de Anda R; Báez-Viveros JL; Merino E; Franco B; Georgellis D; Gosset G; Bolívar F J Mol Microbiol Biotechnol; 2008; 14(4):176-92. PubMed ID: 17938565 [TBL] [Abstract][Full Text] [Related]
39. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
40. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis. Licona-Cassani C; Lara AR; Cabrera-Valladares N; Escalante A; Hernández-Chávez G; Martinez A; Bolívar F; Gosset G J Mol Microbiol Biotechnol; 2014; 24(1):37-45. PubMed ID: 24158146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]