These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29906842)

  • 1. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.
    Demberg K; Laun FB; Bertleff M; Bachert P; Kuder TA
    Phys Rev E; 2018 May; 97(5-1):052412. PubMed ID: 29906842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding.
    Demberg K; Laun FB; Windschuh J; Umathum R; Bachert P; Kuder TA
    Phys Rev E; 2017 Feb; 95(2-1):022404. PubMed ID: 28298006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR-based diffusion pore imaging by double wave vector measurements.
    Kuder TA; Laun FB
    Magn Reson Med; 2013 Sep; 70(3):836-41. PubMed ID: 23065736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulated echo double diffusion encoded imaging of closed pores: Influence and removal of unbalanced terms.
    Demberg K; Laun FB; Bachert P; Ladd ME; Kuder TA
    Phys Rev E; 2019 Oct; 100(4-1):042408. PubMed ID: 31770958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion pore imaging with generalized temporal gradient profiles.
    Laun FB; Kuder TA
    Magn Reson Imaging; 2013 Sep; 31(7):1236-44. PubMed ID: 23688410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance.
    Kuder TA; Laun FB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022706. PubMed ID: 26382431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR-based diffusion pore imaging.
    Laun FB; Kuder TA; Wetscherek A; Stieltjes B; Semmler W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021906. PubMed ID: 23005784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion pore imaging by hyperpolarized xenon-129 nuclear magnetic resonance.
    Kuder TA; Bachert P; Windschuh J; Laun FB
    Phys Rev Lett; 2013 Jul; 111(2):028101. PubMed ID: 23889446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes.
    Hertel SA; Wang X; Hosking P; Simpson MC; Hunter M; Galvosas P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012808. PubMed ID: 26274226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media.
    Mair RW; Hürlimann MD; Sen PN; Schwartz LM; Patz S; Walsworth RL
    Magn Reson Imaging; 2001; 19(3-4):345-51. PubMed ID: 11445310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.
    Mair RW; Sen PN; Hürlimann MD; Patz S; Cory DG; Walsworth RL
    J Magn Reson; 2002 Jun; 156(2):202-12. PubMed ID: 12165255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenon porometry: a novel method for the derivation of pore size distributions.
    Telkki VV; Lounila J; Jokisaari J
    Magn Reson Imaging; 2007 May; 25(4):457-60. PubMed ID: 17466763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments.
    Knagge K; Smith JR; Smith LJ; Buriak J; Raftery D
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):85-9. PubMed ID: 16257190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR study of the vapor phase contribution to diffusion in partially filled silica glasses with nanometer and micrometer pores.
    Ardelean I; Farrher G; Mattea C; Kimmich R
    Magn Reson Imaging; 2005 Feb; 23(2):285-9. PubMed ID: 15833628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence.
    Siow B; Drobnjak I; Chatterjee A; Lythgoe MF; Alexander DC
    J Magn Reson; 2012 Jan; 214(1):51-60. PubMed ID: 22116034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of axonal fiber tract architecture in excised rat spinal cord by localized NMR q-space imaging: simulations and experimental studies.
    Chin CL; Wehrli FW; Fan Y; Hwang SN; Schwartz ED; Nissanov J; Hackney DB
    Magn Reson Med; 2004 Oct; 52(4):733-40. PubMed ID: 15389948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive bipolar double-pulsed-field-gradient NMR reveals signatures for pore size and shape in polydisperse, randomly oriented, inhomogeneous porous media.
    Shemesh N; Ozarslan E; Adiri T; Basser PJ; Cohen Y
    J Chem Phys; 2010 Jul; 133(4):044705. PubMed ID: 20687674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice simulation method to model diffusion and NMR spectra in porous materials.
    Merlet C; Forse AC; Griffin JM; Frenkel D; Grey CP
    J Chem Phys; 2015 Mar; 142(9):094701. PubMed ID: 25747093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental determination of pore shape and size using q-space NMR microscopy in the long diffusion-time limit.
    Topgaard D; Söderman O
    Magn Reson Imaging; 2003 Jan; 21(1):69-76. PubMed ID: 12620549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the defining boundary in nuclear magnetic resonance diffusion experiments.
    Laun FB; Kuder TA; Semmler W; Stieltjes B
    Phys Rev Lett; 2011 Jul; 107(4):048102. PubMed ID: 21867047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.