These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29906879)
1. Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems. Massah M; Nicol M; Kantz H Phys Rev E; 2018 May; 97(5-1):052147. PubMed ID: 29906879 [TBL] [Abstract][Full Text] [Related]
2. Central limit behavior of deterministic dynamical systems. Tirnakli U; Beck C; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040106. PubMed ID: 17500848 [TBL] [Abstract][Full Text] [Related]
3. Transforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distribution. Carpena P; Bernaola-Galván PA; Gómez-Extremera M; Coronado AV Chaos; 2020 Aug; 30(8):083140. PubMed ID: 32872793 [TBL] [Abstract][Full Text] [Related]
4. Characteristic distributions of finite-time Lyapunov exponents. Prasad A; Ramaswamy R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2761-6. PubMed ID: 11970080 [TBL] [Abstract][Full Text] [Related]
5. Anomalous scaling of dynamical large deviations of stationary Gaussian processes. Meerson B Phys Rev E; 2019 Oct; 100(4-1):042135. PubMed ID: 31771031 [TBL] [Abstract][Full Text] [Related]
6. Lévy on-off intermittency. van Kan A; Alexakis A; Brachet ME Phys Rev E; 2021 May; 103(5-1):052115. PubMed ID: 34134220 [TBL] [Abstract][Full Text] [Related]
7. Closer look at time averages of the logistic map at the edge of chaos. Tirnakli U; Tsallis C; Beck C Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056209. PubMed ID: 19518538 [TBL] [Abstract][Full Text] [Related]
8. Pointwise convergence of Birkhoff averages for global observables. Lenci M; Munday S Chaos; 2018 Aug; 28(8):083111. PubMed ID: 30180635 [TBL] [Abstract][Full Text] [Related]
9. Log-amplitude statistics of intermittent and non-Gaussian time series. Kiyono K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031129. PubMed ID: 19391924 [TBL] [Abstract][Full Text] [Related]
10. Modeling long-range memory with stationary Markovian processes. Miccichè S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031116. PubMed ID: 19391911 [TBL] [Abstract][Full Text] [Related]
11. Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change. Drótos G; Bódai T; Tél T Phys Rev E; 2016 Aug; 94(2-1):022214. PubMed ID: 27627305 [TBL] [Abstract][Full Text] [Related]
12. Distributions of time averages for weakly chaotic systems: the role of infinite invariant density. Korabel N; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032114. PubMed ID: 24125221 [TBL] [Abstract][Full Text] [Related]
13. Convex hulls of multiple random walks: A large-deviation study. Dewenter T; Claussen G; Hartmann AK; Majumdar SN Phys Rev E; 2016 Nov; 94(5-1):052120. PubMed ID: 27967062 [TBL] [Abstract][Full Text] [Related]
14. Role of conditional probability in multiscale stationary markovian processes. Miccichè S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011104. PubMed ID: 20866562 [TBL] [Abstract][Full Text] [Related]
15. Randomized central limit theorems: A unified theory. Eliazar I; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021122. PubMed ID: 20866790 [TBL] [Abstract][Full Text] [Related]
16. Mapping spatial persistent large deviations of nonequilibrium surface growth processes onto the temporal persistent large deviations of stochastic random walk processes. Constantin M; Das Sarma S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041602. PubMed ID: 15600416 [TBL] [Abstract][Full Text] [Related]
17. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model. Schurr JM; Fujimoto BS; Diaz R; Robinson BH J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047 [TBL] [Abstract][Full Text] [Related]
18. Convergence to the Asymptotic Large Deviation Limit. Debiossac M; Kiesel N; Lutz E Phys Rev Lett; 2024 Jul; 133(4):047101. PubMed ID: 39121406 [TBL] [Abstract][Full Text] [Related]
19. Fractional Edgeworth expansion: Corrections to the Gaussian-Lévy central-limit theorem. Hazut N; Medalion S; Kessler DA; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052124. PubMed ID: 26066136 [TBL] [Abstract][Full Text] [Related]
20. Anomalous Scaling of Dynamical Large Deviations. Nickelsen D; Touchette H Phys Rev Lett; 2018 Aug; 121(9):090602. PubMed ID: 30230852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]