These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29906889)

  • 1. Validation of model predictions of pore-scale fluid distributions during two-phase flow.
    Bultreys T; Lin Q; Gao Y; Raeini AQ; AlRatrout A; Bijeljic B; Blunt MJ
    Phys Rev E; 2018 May; 97(5-1):053104. PubMed ID: 29906889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition.
    Chang D; Ioannidis MA
    J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low pore connectivity in natural rock.
    Hu Q; Ewing RP; Dultz S
    J Contam Hydrol; 2012 May; 133():76-83. PubMed ID: 22507286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized network modeling of capillary-dominated two-phase flow.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2018 Feb; 97(2-1):023308. PubMed ID: 29548135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks.
    Foroughi S; Bijeljic B; Lin Q; Raeini AQ; Blunt MJ
    Phys Rev E; 2020 Aug; 102(2-1):023302. PubMed ID: 32942424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: data conditioning and model description.
    Karpyn ZT; Piri M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016315. PubMed ID: 17677571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: results.
    Piri M; Karpyn ZT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016316. PubMed ID: 17677572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New type of pore-snap-off and displacement correlations in imbibition.
    Singh K; Bultreys T; Raeini AQ; Shams M; Blunt MJ
    J Colloid Interface Sci; 2022 Mar; 609():384-392. PubMed ID: 34902675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of imbibition in unconsolidated granular materials.
    Gladkikh M; Bryant S
    J Colloid Interface Sci; 2005 Aug; 288(2):526-39. PubMed ID: 15927623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Pore Morphology on Multiphase Fluid Displacement in Porous Media-A High-Resolution Modeling Investigation.
    Pak T; Rabbani HS; Qaseminejad Raeini A; Shokri N
    ACS Omega; 2023 Jan; 8(4):3889-3895. PubMed ID: 36743046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
    van der Linden JH; Narsilio GA; Tordesillas A
    Phys Rev E; 2016 Aug; 94(2-1):022904. PubMed ID: 27627377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study: The Effect of Pore Shape, Geometrical Heterogeneity, and Flow Rate on the Repetitive Two-Phase Fluid Transport in Microfluidic Porous Media.
    Kim S; Zhang J; Ryu S
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.
    Tsai JP; Chang LC; Hsu SY; Shan HY
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):26927-26939. PubMed ID: 26150292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.