These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses. Lukač N; Jezeršek M Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of laser-induced cavitation bubble with consideration of chemical reactions. Wang C; Yan H; Zhang R; Chen F; Liu F Ultrason Sonochem; 2024 Oct; 109():107007. PubMed ID: 39111248 [TBL] [Abstract][Full Text] [Related]
8. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993 [TBL] [Abstract][Full Text] [Related]
9. Cavitation bubble interaction with a rigid spherical particle on a microscale. Zevnik J; Dular M Ultrason Sonochem; 2020 Dec; 69():105252. PubMed ID: 32682313 [TBL] [Abstract][Full Text] [Related]
10. Optical cavitation probe using light scattering from bubble clouds. Iida Y; Lee J; Kozuka T; Yasui K; Towata A; Tuziuti T Ultrason Sonochem; 2009 Apr; 16(4):519-24. PubMed ID: 19138548 [TBL] [Abstract][Full Text] [Related]
11. Jet and Shock Wave from Collapse of Two Cavitation Bubbles. Luo J; Niu Z Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594 [TBL] [Abstract][Full Text] [Related]
12. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls. Fu L; Liang XX; Wang S; Wang S; Wang P; Zhang Z; Wang J; Vogel A; Yao C Ultrason Sonochem; 2023 Dec; 101():106664. PubMed ID: 37931344 [TBL] [Abstract][Full Text] [Related]
13. Deconvolution of acoustically detected bubble-collapse shock waves. Johansen K; Song JH; Johnston K; Prentice P Ultrasonics; 2017 Jan; 73():144-153. PubMed ID: 27657479 [TBL] [Abstract][Full Text] [Related]
14. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device. Choi MJ; Kang G; Huh JS Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161 [TBL] [Abstract][Full Text] [Related]
15. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water. Chen X; Xu RQ; Chen JP; Shen ZH; Jian L; Ni XW Appl Opt; 2004 Jun; 43(16):3251-7. PubMed ID: 15181804 [TBL] [Abstract][Full Text] [Related]
16. Bubble proliferation in the cavitation field of a shock wave lithotripter. Pishchalnikov YA; Williams JC; McAteer JA J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776 [TBL] [Abstract][Full Text] [Related]
17. Microgroove formation in thin copper by laser-induced cavitation bubble shock: numerical and experimental investigation. Wang L; Deng Y; Zou Z; Xiao Y; Su G; Guo Z Appl Opt; 2022 Mar; 61(8):1841-1850. PubMed ID: 35297872 [TBL] [Abstract][Full Text] [Related]
18. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation. Wen H; Yao Z; Zhong Q; Tian Y; Sun Y; Wang F Ultrason Sonochem; 2023 May; 95():106391. PubMed ID: 37003210 [TBL] [Abstract][Full Text] [Related]
19. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission. Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775 [TBL] [Abstract][Full Text] [Related]
20. Physical investigation of the counterjet dynamics during the bubble rebound. Zhang M; Chang Q; Ma X; Wang G; Huang B Ultrason Sonochem; 2019 Nov; 58():104706. PubMed ID: 31450301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]