These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29906938)

  • 1. Impact of the infectious period on epidemics.
    Wilkinson RR; Sharkey KJ
    Phys Rev E; 2018 May; 97(5-1):052403. PubMed ID: 29906938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean-field models for non-Markovian epidemics on networks.
    Sherborne N; Miller JC; Blyuss KB; Kiss IZ
    J Math Biol; 2018 Feb; 76(3):755-778. PubMed ID: 28685365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability of a disease outbreak in stochastic multipatch epidemic models.
    Lahodny GE; Allen LJ
    Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
    Hernandez-Ceron N; Chavez-Casillas JA; Feng Z
    Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics.
    Allen LJS; Wang X
    J Math Biol; 2021 Apr; 82(6):48. PubMed ID: 33830353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact and approximate moment closures for non-Markovian network epidemics.
    Pellis L; House T; Keeling MJ
    J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The probability of epidemic burnout in the stochastic SIR model with vital dynamics.
    Parsons TL; Bolker BM; Dushoff J; Earn DJD
    Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dynamical Behaviors in a Stochastic SIS Epidemic Model with Nonlinear Incidence.
    Rifhat R; Ge Q; Teng Z
    Comput Math Methods Med; 2016; 2016():5218163. PubMed ID: 27418943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Kermack-McKendrick model applied to an infectious disease in a natural population.
    Roberts MG
    IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of assumptions on generation time distributions in epidemic models.
    Svensson Å
    Math Biosci; 2015 Dec; 270(Pt A):81-9. PubMed ID: 26477379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some properties of a simple stochastic epidemic model of SIR type.
    Tuckwell HC; Williams RJ
    Math Biosci; 2007 Jul; 208(1):76-97. PubMed ID: 17173939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography.
    Ballard PG; Bean NG; Ross JV
    J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five challenges for stochastic epidemic models involving global transmission.
    Britton T; House T; Lloyd AL; Mollison D; Riley S; Trapman P
    Epidemics; 2015 Mar; 10():54-7. PubMed ID: 25843384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On analytical approaches to epidemics on networks.
    Trapman P
    Theor Popul Biol; 2007 Mar; 71(2):160-73. PubMed ID: 17222879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations.
    Nakamura GM; Martinez AS
    Sci Rep; 2019 Nov; 9(1):15841. PubMed ID: 31676857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Edge-Based Model of SEIR Epidemics on Static Random Networks.
    Alota CP; Pilar-Arceo CPC; de Los Reyes V AA
    Bull Math Biol; 2020 Jul; 82(7):96. PubMed ID: 32676740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of genetic diversity to the spread of infectious diseases in livestock populations.
    Springbett AJ; MacKenzie K; Woolliams JA; Bishop SC
    Genetics; 2003 Nov; 165(3):1465-74. PubMed ID: 14668395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.