These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29906957)

  • 1. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations.
    Albaba A; Lambert S; Faug T
    Phys Rev E; 2018 May; 97(5-1):052903. PubMed ID: 29906957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification.
    Faug T; Caccamo P; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051301. PubMed ID: 22181405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying force from dense granular avalanches on a wall.
    Chanut B; Faug T; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method.
    Wu F; Fan Y; Liang L; Wang C
    PLoS One; 2016; 11(8):e0160756. PubMed ID: 27513661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines.
    Faug T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062310. PubMed ID: 26764695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows.
    Faug T; Beguin R; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliant contact versus rigid contact: A comparison in the context of granular dynamics.
    Pazouki A; Kwarta M; Williams K; Likos W; Serban R; Jayakumar P; Negrut D
    Phys Rev E; 2017 Oct; 96(4-1):042905. PubMed ID: 29347540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall.
    Pierleoni C; Ciccotti G; Ryckaert JP
    J Chem Phys; 2015 Oct; 143(14):145101. PubMed ID: 26472399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean force and fluctuations on a wall immersed in a sheared granular flow.
    Kneib F; Faug T; Dufour F; Naaim M
    Phys Rev E; 2019 May; 99(5-1):052901. PubMed ID: 31212502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory experiment and discrete-element-method simulation of granular-heap flows under vertical vibration.
    Tsuji D; Otsuki M; Katsuragi H
    Phys Rev E; 2019 Jun; 99(6-1):062902. PubMed ID: 31330738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lift force on an asymmetrical obstacle immersed in a dilute granular flow.
    Potiguar FQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061302. PubMed ID: 22304088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force fluctuations on a wall in interaction with a granular lid-driven cavity flow.
    Kneib F; Faug T; Nicolet G; Eckert N; Naaim M; Dufour F
    Phys Rev E; 2017 Oct; 96(4-1):042906. PubMed ID: 29347536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simplified Calibration Procedure for DEM Simulations of Granular Material Flow.
    Hajivand Dastgerdi R; Malinowska AA
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range : Macroscopic granular force on extended object.
    Faug T
    Eur Phys J E Soft Matter; 2015 May; 38(5):120. PubMed ID: 25957179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium.
    Annamalai S; Balachandar S; Parmar MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall.
    Hodis S; Zamir M
    J Biomech; 2011 Apr; 44(7):1367-73. PubMed ID: 21334629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental assessment of the effective friction at the base of granular chute flows on a smooth incline.
    Roche O; van den Wildenberg S; Valance A; Delannay R; Mangeney A; Corna L; Latchimy T
    Phys Rev E; 2021 Apr; 103(4-1):042905. PubMed ID: 34005905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey of shock-wave structures of smooth-particle granular flows.
    Padgett DA; Mazzoleni AP; Faw SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062209. PubMed ID: 26764684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why granular media are thermal, and quite normal, after all.
    Jiang Y; Liu M
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):10. PubMed ID: 28124766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.