These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 29906965)
1. Stresses in curved nematic membranes. Santiago JA Phys Rev E; 2018 May; 97(5-1):052706. PubMed ID: 29906965 [TBL] [Abstract][Full Text] [Related]
2. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix. Cheong AG; Rey AD Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115 [TBL] [Abstract][Full Text] [Related]
3. Defects in nematic membranes can buckle into pseudospheres. Frank JR; Kardar M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041705. PubMed ID: 18517641 [TBL] [Abstract][Full Text] [Related]
4. Membrane stress and torque induced by Frank's nematic textures: A geometric perspective using surface-based constraints. Santiago JA; Chacón-Acosta G; Monroy F Phys Rev E; 2019 Jul; 100(1-1):012704. PubMed ID: 31499809 [TBL] [Abstract][Full Text] [Related]
5. Spatial manipulation of topological defects in nematic shells. Mesarec L; Iglič A; Kralj S Eur Phys J E Soft Matter; 2022 Jul; 45(7):62. PubMed ID: 35876913 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment. Napoli G; Vergori L Phys Rev E; 2016 Aug; 94(2-1):020701. PubMed ID: 27627231 [TBL] [Abstract][Full Text] [Related]
7. Curvature-driven stability of defects in nematic textures over spherical disks. Duan X; Yao Z Phys Rev E; 2017 Jun; 95(6-1):062706. PubMed ID: 28709326 [TBL] [Abstract][Full Text] [Related]
8. Nematic membranes: shape instabilities of closed achiral vesicles. Biscari P; Terentjev EM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051706. PubMed ID: 16802953 [TBL] [Abstract][Full Text] [Related]
9. Extrinsic curvature effects on nematic shells. Napoli G; Vergori L Phys Rev Lett; 2012 May; 108(20):207803. PubMed ID: 23003189 [TBL] [Abstract][Full Text] [Related]
10. Fluid lipid membranes: from differential geometry to curvature stresses. Deserno M Chem Phys Lipids; 2015 Jan; 185():11-45. PubMed ID: 24835737 [TBL] [Abstract][Full Text] [Related]
11. Texture formation under phase ordering and phase separation in polymer-liquid crystal mixtures. Das SK; Rey AD J Chem Phys; 2004 Nov; 121(19):9733-43. PubMed ID: 15538897 [TBL] [Abstract][Full Text] [Related]
12. Horizontal transportation of a Maltese cross pattern in nematic liquid crystalline droplets under a temperature gradient. Yoshioka J; Fukao K Phys Rev E; 2019 Feb; 99(2-1):022702. PubMed ID: 30934222 [TBL] [Abstract][Full Text] [Related]
13. Forces in nematic liquid crystals constrained to the nanometer scale under hybrid anchoring conditions. Zappone B; Richetti P; Barberi R; Bartolino R; Nguyen HT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041703. PubMed ID: 15903687 [TBL] [Abstract][Full Text] [Related]
14. Confined nematic liquid crystal between two spherical boundaries with planar anchoring. Seyednejad SR; Mozaffari MR; Ejtehadi MR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012508. PubMed ID: 23944475 [TBL] [Abstract][Full Text] [Related]
15. A theory of ordering of elongated and curved proteins on membranes driven by density and curvature. Tozzi C; Walani N; Le Roux AL; Roca-Cusachs P; Arroyo M Soft Matter; 2021 Mar; 17(12):3367-3379. PubMed ID: 33644786 [TBL] [Abstract][Full Text] [Related]
16. Confined nematic polymers: order and packing in a nematic drop. Svensek D; Veble G; Podgornik R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011708. PubMed ID: 20866636 [TBL] [Abstract][Full Text] [Related]
17. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Lev BI; Chernyshuk SB; Tomchuk PM; Yokoyama H Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021709. PubMed ID: 11863547 [TBL] [Abstract][Full Text] [Related]
18. Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Tang P; Qiu F; Zhang H; Yang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016710. PubMed ID: 16090137 [TBL] [Abstract][Full Text] [Related]
19. Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host. Andrienko D; Germano G; Allen MP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041701. PubMed ID: 11308861 [TBL] [Abstract][Full Text] [Related]
20. Computer simulation study of a liquid crystal confined to a spherical cavity. Trukhina Y; Schilling T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011701. PubMed ID: 18351860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]