These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29906969)

  • 1. Mechanical perturbation control of cardiac alternans.
    Hazim A; Belhamadia Y; Dubljevic S
    Phys Rev E; 2018 May; 97(5-1):052407. PubMed ID: 29906969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of cardiac alternans in an electromechanical model of cardiac tissue.
    Hazim A; Belhamadia Y; Dubljevic S
    Comput Biol Med; 2015 Aug; 63():108-17. PubMed ID: 26069933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac alternans annihilation by distributed mechano-electric feedback (MEF).
    Deshpande D; Belhamadia Y; Dubljevic S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():259-62. PubMed ID: 22254299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cardiac alternans by mechanical and electrical feedback.
    Yapari F; Deshpande D; Belhamadia Y; Dubljevic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012706. PubMed ID: 25122334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes.
    Park JI; Lim KM
    Biomed Eng Online; 2019 Jun; 18(1):72. PubMed ID: 31174533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.
    Weise LD; Panfilov AV
    PLoS One; 2013; 8(3):e59317. PubMed ID: 23527160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling.
    Quinn TA; Kohl P
    Prog Biophys Mol Biol; 2016 Jul; 121(2):110-22. PubMed ID: 27208698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability and state feedback control of a cardiac ionic cell model.
    Vogt R; Guzman A; Charron C; Muñoz L
    Comput Biol Med; 2021 Dec; 139():104909. PubMed ID: 34818582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.
    Zile MA; Trayanova NA
    Prog Biophys Mol Biol; 2016 Jan; 120(1-3):270-80. PubMed ID: 26724571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative appraisal of mechano-electric feedback mechanisms in the heart.
    Timmermann V; Dejgaard LA; Haugaa KH; Edwards AG; Sundnes J; McCulloch AD; Wall ST
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):404-417. PubMed ID: 28851517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
    Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA
    Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based control of cardiac alternans on a ring.
    Garzón A; Grigoriev RO; Fenton FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021932. PubMed ID: 19792176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional electromechanical alternans in anesthetized pig hearts: modulation by mechanoelectric feedback.
    Murphy CF; Lab MJ; Horner SM; Dick DJ; Harrison FG
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1726-35. PubMed ID: 7977805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations.
    Sundnes J; Wall S; Osnes H; Thorvaldsen T; McCulloch AD
    Comput Methods Biomech Biomed Engin; 2014; 17(6):604-15. PubMed ID: 22800534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model.
    Hermeling E; Delhaas T; Prinzen FW; Kuijpers NH
    Prog Biophys Mol Biol; 2012; 110(2-3):359-71. PubMed ID: 22835663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction.
    Galice S; Bers DM; Sato D
    Biophys J; 2016 Jun; 110(12):2671-2677. PubMed ID: 27332125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue.
    Frotscher R; Muanghong D; Dursun G; Goßmann M; Temiz-Artmann A; Staat M
    J Biomech; 2016 Aug; 49(12):2428-35. PubMed ID: 26972766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding cardiac alternans: a piecewise linear modeling framework.
    Thul R; Coombes S
    Chaos; 2010 Dec; 20(4):045102. PubMed ID: 21198114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans.
    Sato D; Shiferaw Y; Qu Z; Garfinkel A; Weiss JN; Karma A
    Biophys J; 2007 Feb; 92(4):L33-5. PubMed ID: 17172300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.