These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Counteracting Effects of Trimethylamine Malik R; Chandra A J Phys Chem B; 2023 Aug; 127(33):7372-7383. PubMed ID: 37566900 [TBL] [Abstract][Full Text] [Related]
5. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study. Sarma R; Paul S J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044 [TBL] [Abstract][Full Text] [Related]
6. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions. Sarma R; Paul S J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576 [TBL] [Abstract][Full Text] [Related]
7. Effect of ionic solutes on the hydrogen bond network dynamics of water: power spectral analysis of aqueous NaCl solutions. Mudi A; Chakravarty C J Phys Chem B; 2006 Apr; 110(16):8422-31. PubMed ID: 16623528 [TBL] [Abstract][Full Text] [Related]
8. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions. Paul S; Patey GN J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796 [TBL] [Abstract][Full Text] [Related]
9. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics. Beck DA; Bennion BJ; Alonso DO; Daggett V Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430 [TBL] [Abstract][Full Text] [Related]
10. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute. Sarma R; Paul S J Chem Phys; 2012 Sep; 137(11):114503. PubMed ID: 22998267 [TBL] [Abstract][Full Text] [Related]
11. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer. Yao Y; Berkowitz ML; Kanai Y J Chem Phys; 2015 Dec; 143(24):241101. PubMed ID: 26723580 [TBL] [Abstract][Full Text] [Related]
12. Influence of TMAO and urea on the structure of water studied by inelastic X-ray scattering. Sahle CJ; Schroer MA; Juurinen I; Niskanen J Phys Chem Chem Phys; 2016 Jun; 18(24):16518-26. PubMed ID: 27270889 [TBL] [Abstract][Full Text] [Related]
13. Dynamical Model for the Counteracting Effects of Trimethylamine Teng X; Ichiye T J Phys Chem B; 2020 Mar; 124(10):1978-1986. PubMed ID: 32059113 [TBL] [Abstract][Full Text] [Related]
14. Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar. Imoto S; Forbert H; Marx D Phys Chem Chem Phys; 2015 Oct; 17(37):24224-37. PubMed ID: 26325021 [TBL] [Abstract][Full Text] [Related]
15. The effects of chloride binding on the behavior of cellulose-derived solutes in the ionic liquid 1-butyl-3-methylimidazolium chloride. Rabideau BD; Ismail AE J Phys Chem B; 2012 Aug; 116(32):9732-43. PubMed ID: 22809460 [TBL] [Abstract][Full Text] [Related]
16. How Different Are the Characteristics of Aqueous Solutions of tert-Butyl Alcohol and Trimethylamine- N-Oxide? A Molecular Dynamics Simulation Study. Bandyopadhyay D; Kamble Y; Choudhury N J Phys Chem B; 2018 Aug; 122(34):8220-8232. PubMed ID: 30102537 [TBL] [Abstract][Full Text] [Related]
17. Non-polar solutes in water and in aqueous solutions of protein denaturants. Modeling of solution and transfer processes. Dohnal V; Costas M; Carrillo-Nava E; Hovorka S Biophys Chem; 2001 Apr; 90(2):183-202. PubMed ID: 11352276 [TBL] [Abstract][Full Text] [Related]
18. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect. Mazur K; Heisler IA; Meech SR J Phys Chem B; 2011 Mar; 115(11):2563-73. PubMed ID: 21355600 [TBL] [Abstract][Full Text] [Related]
19. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. Athawale MV; Sarupria S; Garde S J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346 [TBL] [Abstract][Full Text] [Related]
20. Effects of Urea and TMAO on Lipid Self-Assembly under Osmotic Stress Conditions. Pham QD; Wolde-Kidan A; Gupta A; Schlaich A; Schneck E; Netz RR; Sparr E J Phys Chem B; 2018 Jun; 122(25):6471-6482. PubMed ID: 29693387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]