These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29907152)

  • 1. The effect of myocardial action potential duration on cardiac pumping efficacy: a computational study.
    Jeong DU; Lim KM
    Biomed Eng Online; 2018 Jun; 17(1):79. PubMed ID: 29907152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study.
    Yuniarti AR; Lim KM
    Biomed Eng Online; 2017 Jan; 16(1):11. PubMed ID: 28086779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry.
    Heikhmakhtiar AK; Lee CH; Song KS; Lim KM
    Med Biol Eng Comput; 2020 May; 58(5):977-990. PubMed ID: 32095980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study.
    Viswanathan PC; Shaw RM; Rudy Y
    Circulation; 1999 May; 99(18):2466-74. PubMed ID: 10318671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the KCNQ1 S140G Mutation on Human Ventricular Arrhythmogenesis and Pumping Performance: Simulation Study.
    Jeong DU; Lim KM
    Front Physiol; 2018; 9():926. PubMed ID: 30108508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity.
    Jeong DU; Lee J; Lim KM
    Comput Math Methods Med; 2020; 2020():7194275. PubMed ID: 32328155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of KCNQ1 G229D mutation on cardiac pumping efficacy and reentrant dynamics in ventricles: Computational study.
    Yuniarti AR; Setianto F; Marcellinus A; Hwang HJ; Choi SW; Trayanova N; Lim KM
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2970. PubMed ID: 29488358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for human action potential dynamics in vivo.
    Gray RA; Franz MR
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H534-H546. PubMed ID: 31951472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2016 Oct; 280():71-86. PubMed ID: 27545966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular calcium and electrical restitution in mammalian cardiac cells.
    Szigligeti P; Bányász T; Magyar J; Szigeti G; Papp Z; Varró A; Nánási PP
    Acta Physiol Scand; 1998 Jun; 163(2):139-47. PubMed ID: 9648632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of the effect of KCNH2 L532P mutation on ventricular electromechanical behaviors.
    Heikhmakhtiar AK; Dusturia N; Lim KM
    J Electrocardiol; 2021; 66():24-32. PubMed ID: 33721574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes.
    Park JI; Lim KM
    Biomed Eng Online; 2019 Jun; 18(1):72. PubMed ID: 31174533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment.
    Margara F; Wang ZJ; Levrero-Florencio F; Santiago A; Vázquez M; Bueno-Orovio A; Rodriguez B
    Prog Biophys Mol Biol; 2021 Jan; 159():58-74. PubMed ID: 32710902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of repolarization in rabbit Purkinje and ventricular myocytes coupled by a variable resistance.
    Huelsing DJ; Spitzer KW; Cordeiro JM; Pollard AE
    Am J Physiol; 1999 Feb; 276(2):H572-81. PubMed ID: 9950859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current.
    Yang PC; Song Y; Giles WR; Horvath B; Chen-Izu Y; Belardinelli L; Rajamani S; Clancy CE
    J Physiol; 2015 Mar; 593(6):1429-42. PubMed ID: 25545172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study.
    Dusturia N; Choi SW; Song KS; Lim KM
    Biomed Eng Online; 2019 Mar; 18(1):23. PubMed ID: 30871548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased thin filament activation enhances alternans in human chronic atrial fibrillation.
    Zile MA; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1453-H1462. PubMed ID: 30141984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study.
    Faber GM; Rudy Y
    Biophys J; 2000 May; 78(5):2392-404. PubMed ID: 10777735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits.
    Odening KE; Jung BA; Lang CN; Cabrera Lozoya R; Ziupa D; Menza M; Relan J; Franke G; Perez Feliz S; Koren G; Zehender M; Bode C; Brunner M; Sermesant M; Föll D
    Heart Rhythm; 2013 Oct; 10(10):1533-41. PubMed ID: 23892340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias.
    Rubenstein DS; Lipsius SL
    Circulation; 1995 Jan; 91(1):201-14. PubMed ID: 7805204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.