These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Immuno-targeting the multifunctional CD38 using nanobody. Li T; Qi S; Unger M; Hou YN; Deng QW; Liu J; Lam CMC; Wang XW; Xin D; Zhang P; Koch-Nolte F; Hao Q; Zhang H; Lee HC; Zhao YJ Sci Rep; 2016 Jun; 6():27055. PubMed ID: 27251573 [TBL] [Abstract][Full Text] [Related]
4. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38 Fumey W; Koenigsdorf J; Kunick V; Menzel S; Schütze K; Unger M; Schriewer L; Haag F; Adam G; Oberle A; Binder M; Fliegert R; Guse A; Zhao YJ; Cheung Lee H; Malavasi F; Goldbaum F; van Hegelsom R; Stortelers C; Bannas P; Koch-Nolte F Sci Rep; 2017 Oct; 7(1):14289. PubMed ID: 29084989 [TBL] [Abstract][Full Text] [Related]
5. Targeting CD38-Expressing Multiple Myeloma and Burkitt Lymphoma Cells In Vitro with Nanobody-Based Chimeric Antigen Receptors (Nb-CARs). Hambach J; Riecken K; Cichutek S; Schütze K; Albrecht B; Petry K; Röckendorf JL; Baum N; Kröger N; Hansen T; Schuch G; Haag F; Adam G; Fehse B; Bannas P; Koch-Nolte F Cells; 2020 Jan; 9(2):. PubMed ID: 32013131 [TBL] [Abstract][Full Text] [Related]
6. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies. Schriewer L; Schütze K; Petry K; Hambach J; Fumey W; Koenigsdorf J; Baum N; Menzel S; Rissiek B; Riecken K; Fehse B; Röckendorf JL; Schmid J; Albrecht B; Pinnschmidt H; Ayuk F; Kröger N; Binder M; Schuch G; Hansen T; Haag F; Adam G; Koch-Nolte F; Bannas P Theranostics; 2020; 10(6):2645-2658. PubMed ID: 32194826 [No Abstract] [Full Text] [Related]
7. Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Feng X; Zhang L; Acharya C; An G; Wen K; Qiu L; Munshi NC; Tai YT; Anderson KC Clin Cancer Res; 2017 Aug; 23(15):4290-4300. PubMed ID: 28249894 [No Abstract] [Full Text] [Related]
8. Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells. An N; Hou YN; Zhang QX; Li T; Zhang QL; Fang C; Chen H; Lee HC; Zhao YJ; Du X Mol Pharm; 2018 Oct; 15(10):4577-4588. PubMed ID: 30185037 [TBL] [Abstract][Full Text] [Related]
9. A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. Duray E; Lejeune M; Baron F; Beguin Y; Devoogdt N; Krasniqi A; Lauwers Y; Zhao YJ; D'Huyvetter M; Dumoulin M; Caers J J Hematol Oncol; 2021 Nov; 14(1):183. PubMed ID: 34727950 [TBL] [Abstract][Full Text] [Related]
10. Perspectives for the Development of CD38-Specific Heavy Chain Antibodies as Therapeutics for Multiple Myeloma. Bannas P; Koch-Nolte F Front Immunol; 2018; 9():2559. PubMed ID: 30459772 [TBL] [Abstract][Full Text] [Related]
11. CD38-specific nanobodies allow Pape LJ; Hambach J; Gebhardt AJ; Rissiek B; Stähler T; Tode N; Khan C; Weisel K; Adam G; Koch-Nolte F; Bannas P Front Immunol; 2022; 13():1010270. PubMed ID: 36389758 [TBL] [Abstract][Full Text] [Related]
12. [THE SERUM LEVEL OF TOTAL AND OLIGOMERIC FRACTIONS OF SOLUBLE MOLECULES CD38 UNDER MALIGNANT TUMORS OF CERVIX AND UTERINE BODY]. Novikov VV; Mamaeva ME; Aliasova AV; Hazov MV; Kasatova ES; Shumilova SV; Karaulov AV Klin Lab Diagn; 2015 May; 60(5):32-6. PubMed ID: 26470437 [TBL] [Abstract][Full Text] [Related]
14. Targeting multiple myeloma with nanobody-based heavy chain antibodies, bispecific killer cell engagers, chimeric antigen receptors, and nanobody-displaying AAV vectors. Hambach J; Mann AM; Bannas P; Koch-Nolte F Front Immunol; 2022; 13():1005800. PubMed ID: 36405759 [TBL] [Abstract][Full Text] [Related]
15. Serum levels of different forms of soluble CD38 antigen in burned patients. Lebedev MJ; Egorova NI; Sholkina MN; Vilkov SA; Baryshnikov AJ; Novikov VV Burns; 2004 Sep; 30(6):552-6. PubMed ID: 15302420 [TBL] [Abstract][Full Text] [Related]
16. A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Drent E; Themeli M; Poels R; de Jong-Korlaar R; Yuan H; de Bruijn J; Martens ACM; Zweegman S; van de Donk NWCJ; Groen RWJ; Lokhorst HM; Mutis T Mol Ther; 2017 Aug; 25(8):1946-1958. PubMed ID: 28506593 [TBL] [Abstract][Full Text] [Related]
17. A cytosolic chaperone complex controls folding and degradation of type III CD38. Wu Y; Zhang J; Fang L; Lee HC; Zhao YJ J Biol Chem; 2019 Mar; 294(11):4247-4258. PubMed ID: 30670591 [TBL] [Abstract][Full Text] [Related]
18. B cells naturally induced during dengue virus infection release soluble CD27, the plasma level of which is associated with severe forms of pediatric dengue. Castañeda DM; Salgado DM; Narváez CF Virology; 2016 Oct; 497():136-145. PubMed ID: 27467579 [TBL] [Abstract][Full Text] [Related]
19. VS38 as a promising CD38 substitute antibody for flow cytometric detection of plasma cells in the daratumumab era. Mizuta S; Kawata T; Kawabata H; Yamane N; Mononobe S; Komai T; Koba Y; Ukyo N; Tamekane A; Watanabe M Int J Hematol; 2019 Sep; 110(3):322-330. PubMed ID: 31183814 [TBL] [Abstract][Full Text] [Related]
20. New mAb therapies in multiple myeloma: interference with blood transfusion compatibility testing. De Vooght KM; Oostendorp M; van Solinge WW Curr Opin Hematol; 2016 Nov; 23(6):557-562. PubMed ID: 27389485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]