These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 29907308)
1. Advanced editing of the nuclear and plastid genomes in plants. Piatek AA; Lenaghan SC; Neal Stewart C Plant Sci; 2018 Aug; 273():42-49. PubMed ID: 29907308 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
4. Current and future editing reagent delivery systems for plant genome editing. Ran Y; Liang Z; Gao C Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114 [TBL] [Abstract][Full Text] [Related]
5. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Quétier F Plant Sci; 2016 Jan; 242():65-76. PubMed ID: 26566825 [TBL] [Abstract][Full Text] [Related]
6. Advancing organelle genome transformation and editing for crop improvement. Li S; Chang L; Zhang J Plant Commun; 2021 Mar; 2(2):100141. PubMed ID: 33898977 [TBL] [Abstract][Full Text] [Related]
7. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Meyers B; Zaltsman A; Lacroix B; Kozlovsky SV; Krichevsky A Biotechnol Adv; 2010; 28(6):747-56. PubMed ID: 20685387 [TBL] [Abstract][Full Text] [Related]
8. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585 [TBL] [Abstract][Full Text] [Related]
9. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. Schindel HS; Piatek AA; Stewart CN; Lenaghan SC Plant Cell Rep; 2018 Oct; 37(10):1419-1429. PubMed ID: 30039465 [TBL] [Abstract][Full Text] [Related]
10. Genome editing for plant synthetic metabolic engineering and developmental regulation. Tan J; Shen M; Chai N; Liu Q; Liu YG; Zhu Q J Plant Physiol; 2023 Dec; 291():154141. PubMed ID: 38016350 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Soda N; Verma L; Giri J Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811 [TBL] [Abstract][Full Text] [Related]
17. Genome Editing to Improve Abiotic Stress Responses in Plants. Osakabe Y; Osakabe K Prog Mol Biol Transl Sci; 2017; 149():99-109. PubMed ID: 28712503 [TBL] [Abstract][Full Text] [Related]
18. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Liu G; Li J; Godwin ID Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290 [TBL] [Abstract][Full Text] [Related]