BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29907313)

  • 1. Redesigning thiamin synthesis: Prospects and potential payoffs.
    Hanson AD; Amthor JS; Sun J; Niehaus TD; Gregory JF; Bruner SD; Ding Y
    Plant Sci; 2018 Aug; 273():92-99. PubMed ID: 29907313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parts-Prospecting for a High-Efficiency Thiamin Thiazole Biosynthesis Pathway.
    Sun J; Sigler CL; Beaudoin GAW; Joshi J; Patterson JA; Cho KH; Ralat MA; Gregory JF; Clark DG; Deng Z; Colquhoun TA; Hanson AD
    Plant Physiol; 2019 Mar; 179(3):958-968. PubMed ID: 30337452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity.
    Moulin M; Nguyen GT; Scaife MA; Smith AG; Fitzpatrick TB
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14622-7. PubMed ID: 23959877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.
    Dong W; Stockwell VO; Goyer A
    Plant Cell Physiol; 2015 Dec; 56(12):2285-96. PubMed ID: 26454882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural and biochemical foundations of thiamin biosynthesis.
    Jurgenson CT; Begley TP; Ealick SE
    Annu Rev Biochem; 2009; 78():569-603. PubMed ID: 19348578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s.
    Joshi J; Beaudoin GAW; Patterson JA; García-García JD; Belisle CE; Chang LY; Li L; Duncan O; Millar AH; Hanson AD
    Biochem J; 2020 Jun; 477(11):2055-2069. PubMed ID: 32441748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants.
    Strobbe S; Verstraete J; Stove C; Van Der Straeten D
    Plant Physiol; 2021 Aug; 186(4):1832-1847. PubMed ID: 33944954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divisions of labor in the thiamin biosynthetic pathway among organs of maize.
    Guan JC; Hasnain G; Garrett TJ; Chase CD; Gregory J; Hanson AD; McCarty DR
    Front Plant Sci; 2014; 5():370. PubMed ID: 25136345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase.
    Hazra AB; Han Y; Chatterjee A; Zhang Y; Lai RY; Ealick SE; Begley TP
    J Am Chem Soc; 2011 Jun; 133(24):9311-9. PubMed ID: 21534620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural biology of enzymes of the thiamin biosynthesis pathway.
    Settembre E; Begley TP; Ealick SE
    Curr Opin Struct Biol; 2003 Dec; 13(6):739-47. PubMed ID: 14675553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate.
    Chatterjee A; Jurgenson CT; Schroeder FC; Ealick SE; Begley TP
    J Am Chem Soc; 2007 Mar; 129(10):2914-22. PubMed ID: 17309261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Iron-Mediated Sulfur Transfer in Archael and Yeast Thiazole Synthases.
    Zhang X; Eser BE; Chanani PK; Begley TP; Ealick SE
    Biochemistry; 2016 Mar; 55(12):1826-38. PubMed ID: 26919468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of thiamin in Bacillus subtilis. Isolation of mutants accumulating 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate.
    Walter W; Bacher A
    J Gen Microbiol; 1977 Dec; 103(2):359-66. PubMed ID: 413878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin.
    Gutowska MA; Shome B; Sudek S; McRose DL; Hamilton M; Giovannoni SJ; Begley TP; Worden AZ
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis.
    Chatterjee A; Jurgenson CT; Schroeder FC; Ealick SE; Begley TP
    J Am Chem Soc; 2006 Jun; 128(22):7158-9. PubMed ID: 16734458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
    Gelder KV; Oliveira-Filho ER; García-García JD; Hu Y; Bruner SD; Hanson AD
    ACS Synth Biol; 2023 Apr; 12(4):963-970. PubMed ID: 36920242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Biosynthesis of the Pyrimidine Moiety of Thiamin in Halobacterium salinarum.
    Kijima Y; Hayashi M; Yamada K; Tazuya-Murayama K
    J Nutr Sci Vitaminol (Tokyo); 2016; 62(2):130-3. PubMed ID: 27264098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of thiamin under anaerobic conditions in Saccharomyces cerevisiae.
    Tanaka K; Tazuya K; Yamada K; Kumaoka H
    Biol Pharm Bull; 2000 Jan; 23(1):108-11. PubMed ID: 10706422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS.
    Dorrestein PC; Zhai H; McLafferty FW; Begley TP
    Chem Biol; 2004 Oct; 11(10):1373-81. PubMed ID: 15489164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation.
    Strobbe S; Verstraete J; Stove C; Van Der Straeten D
    Plant Biotechnol J; 2021 Jun; 19(6):1253-1267. PubMed ID: 33448624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.