BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 29907994)

  • 1. Statistical enhancement of lipase extracellular production by Bacillus stratosphericus PSP8 in a batch submerged fermentation process.
    Ismail AR; El-Henawy SB; Younis SA; Betiha MA; El-Gendy NS; Azab MS; Sedky NM
    J Appl Microbiol; 2018 Oct; 125(4):1076-1093. PubMed ID: 29907994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components.
    Ameri A; Shakibaie M; Soleimani-Kermani M; Faramarzi MA; Forootanfar H
    Prep Biochem Biotechnol; 2019; 49(2):184-191. PubMed ID: 30712452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium Optimization for Improved Production of Dihydrolipohyl Dehydrogenase from Bacillus sphaericus PAD-91 in Escherichia coli.
    Shahbazmohammadi H; Omidinia E
    Mol Biotechnol; 2017 Jul; 59(7):260-270. PubMed ID: 28573449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).
    Vasiee A; Behbahani BA; Yazdi FT; Moradi S
    Microb Pathog; 2016 Dec; 101():36-43. PubMed ID: 27816679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concomitant production of detergent compatible enzymes by Bacillus flexus XJU-1.
    Niyonzima FN; More SS
    Braz J Microbiol; 2014; 45(3):903-10. PubMed ID: 25477924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods.
    Yele VU; Desai K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):855-69. PubMed ID: 25344436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation.
    Bussamara R; Fuentefria AM; de Oliveira ES; Broetto L; Simcikova M; Valente P; Schrank A; Vainstein MH
    Bioresour Technol; 2010 Jan; 101(1):268-75. PubMed ID: 19700311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel extremely acidic lipases produced from Bacillus species using oil substrates.
    Saranya P; Kumari HS; Jothieswari M; Rao BP; Sekaran G
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):9-15. PubMed ID: 24185617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical medium optimization and production of a hyperthermostable lipase from Burkholderia cepacia in a bioreactor.
    Rathi P; Goswami VK; Sahai V; Gupta R
    J Appl Microbiol; 2002; 93(6):930-6. PubMed ID: 12452948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A process for extracellular thermostable lipase production by a novel Bacillus thermoamylovorans strain.
    Deive FJ; Álvarez MS; Morán P; Sanromán MA; Longo MA
    Bioprocess Biosyst Eng; 2012 Aug; 35(6):931-41. PubMed ID: 22237683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of cyclodextrin glucanotransferase production from Bacillus clausii E16 in submerged fermentation using response surface methodology.
    Alves-Prado HF; Bocchini DA; Gomes E; Baida LC; Contiero J; Roberto IC; Da Silva R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):27-40. PubMed ID: 18478374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation of a bacterium producing epoxide hydrolase with high enantioselectivity and optimization of fermentation conditions].
    Li C; Cui H; Tian X; Ji A; Qu Y
    Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):422-6. PubMed ID: 16279213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase of Bacillus stratosphericus L1: Cloning, expression and characterization.
    Gricajeva A; Bendikienė V; Kalėdienė L
    Int J Biol Macromol; 2016 Nov; 92():96-104. PubMed ID: 27392776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of naringinase from a new soil isolate, Bacillus methylotrophicus: isolation, optimization and scale-up studies.
    Mukund P; Belur PD; Saidutta MB
    Prep Biochem Biotechnol; 2014; 44(2):146-63. PubMed ID: 24152101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α- decarboxylase].
    Feng Z; Zhang J; Chen G; Cha Y; Liu J; Ge Y; Cheng S; Yu B
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):44-55. PubMed ID: 27305779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.
    Kumar D; Parshad R; Gupta VK
    Int J Biol Macromol; 2014 May; 66():97-107. PubMed ID: 24534493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical optimization of conditions for protease production from Bacillus sp. and its scale-up in a bioreactor.
    Saran S; Isar J; Saxena RK
    Appl Biochem Biotechnol; 2007; 141(2-3):229-39. PubMed ID: 18025554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five-factor-at-a-time (FFAT) approach for optimal production of an extracellular RNase from
    Kumar R; Singh Kanwar S
    Prep Biochem Biotechnol; 2019; 49(9):916-926. PubMed ID: 31322478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi.
    Colla LM; Primaz AL; Benedetti S; Loss RA; de Lima M; Reinehr CO; Bertolin TE; Costa JA
    Braz J Microbiol; 2016; 47(2):461-7. PubMed ID: 26991270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential production of amylolytic and lipolytic enzymes by bacterium strain isolated from petroleum contaminated soil.
    Carvalho NB; de Souza RL; de Castro HF; Zanin GM; Lima AS; Soares CM
    Appl Biochem Biotechnol; 2008 Jul; 150(1):25-32. PubMed ID: 18427738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.